1. 参考ChatGLM-6B代码实现模型多卡部署
This commit is contained in:
parent
4df8bb92b1
commit
edbe155c2e
|
|
@ -5,6 +5,8 @@ from transformers import AutoTokenizer, AutoModel
|
|||
import torch
|
||||
from configs.model_config import LLM_DEVICE
|
||||
|
||||
from typing import Dict, Tuple, Union, Optional
|
||||
|
||||
DEVICE = LLM_DEVICE
|
||||
DEVICE_ID = "0" if torch.cuda.is_available() else None
|
||||
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
|
||||
|
|
@ -17,6 +19,36 @@ def torch_gc():
|
|||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
|
||||
# transformer.word_embeddings 占用1层
|
||||
# transformer.final_layernorm 和 lm_head 占用1层
|
||||
# transformer.layers 占用 28 层
|
||||
# 总共30层分配到num_gpus张卡上
|
||||
num_trans_layers = 28
|
||||
per_gpu_layers = 30 / num_gpus
|
||||
|
||||
# bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError
|
||||
# windows下 model.device 会被设置成 transformer.word_embeddings.device
|
||||
# linux下 model.device 会被设置成 lm_head.device
|
||||
# 在调用chat或者stream_chat时,input_ids会被放到model.device上
|
||||
# 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
|
||||
# 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
|
||||
device_map = {'transformer.word_embeddings': 0,
|
||||
'transformer.final_layernorm': 0, 'lm_head': 0}
|
||||
|
||||
used = 2
|
||||
gpu_target = 0
|
||||
for i in range(num_trans_layers):
|
||||
if used >= per_gpu_layers:
|
||||
gpu_target += 1
|
||||
used = 0
|
||||
assert gpu_target < num_gpus
|
||||
device_map[f'transformer.layers.{i}'] = gpu_target
|
||||
used += 1
|
||||
|
||||
return device_map
|
||||
|
||||
|
||||
class ChatGLM(LLM):
|
||||
max_token: int = 10000
|
||||
temperature: float = 0.01
|
||||
|
|
@ -51,19 +83,34 @@ class ChatGLM(LLM):
|
|||
|
||||
def load_model(self,
|
||||
model_name_or_path: str = "THUDM/chatglm-6b",
|
||||
llm_device=LLM_DEVICE):
|
||||
llm_device=LLM_DEVICE,
|
||||
device_map: Optional[Dict[str, int]] = None,
|
||||
**kwargs):
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name_or_path,
|
||||
trust_remote_code=True
|
||||
)
|
||||
if torch.cuda.is_available() and llm_device.lower().startswith("cuda"):
|
||||
# 根据当前设备GPU数量决定是否进行多卡部署
|
||||
num_gpus = torch.cuda.device_count()
|
||||
if num_gpus < 2 and device_map is None:
|
||||
self.model = (
|
||||
AutoModel.from_pretrained(
|
||||
model_name_or_path,
|
||||
trust_remote_code=True)
|
||||
trust_remote_code=True,
|
||||
**kwargs)
|
||||
.half()
|
||||
.cuda()
|
||||
)
|
||||
else:
|
||||
from accelerate import dispatch_model
|
||||
|
||||
model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True, **kwargs).half()
|
||||
# 可传入device_map自定义每张卡的部署情况
|
||||
if device_map is None:
|
||||
device_map = auto_configure_device_map(num_gpus)
|
||||
|
||||
self.model = dispatch_model(model, device_map=device_map)
|
||||
else:
|
||||
self.model = (
|
||||
AutoModel.from_pretrained(
|
||||
|
|
|
|||
Loading…
Reference in New Issue