support adding keywords to model tokenizer (#1622)
* support adding keywords to model tokenizer * add keyword_preprocess.py usage doc * init new token with good weights --------- Co-authored-by: Charles Ju <charlesyju@gmail.com>
This commit is contained in:
parent
6ed87954b2
commit
f19211b1f5
|
|
@ -97,6 +97,10 @@ EMBEDDING_MODEL = "m3e-base" # 可以尝试最新的嵌入式sota模型:bge-la
|
||||||
# Embedding 模型运行设备。设为"auto"会自动检测,也可手动设定为"cuda","mps","cpu"其中之一。
|
# Embedding 模型运行设备。设为"auto"会自动检测,也可手动设定为"cuda","mps","cpu"其中之一。
|
||||||
EMBEDDING_DEVICE = "auto"
|
EMBEDDING_DEVICE = "auto"
|
||||||
|
|
||||||
|
# 如果需要在 EMBEDDING_MODEL 中增加自定义的关键字时配置
|
||||||
|
EMBEDDING_KEYWORD_FILE = "keywords.txt"
|
||||||
|
EMBEDDING_MODEL_OUTPUT_PATH = "output"
|
||||||
|
|
||||||
# LLM 名称
|
# LLM 名称
|
||||||
LLM_MODEL = "chatglm2-6b"
|
LLM_MODEL = "chatglm2-6b"
|
||||||
# AgentLM模型的名称 (可以不指定,指定之后就锁定进入Agent之后的Chain的模型,不指定就是LLM_MODEL)
|
# AgentLM模型的名称 (可以不指定,指定之后就锁定进入Agent之后的Chain的模型,不指定就是LLM_MODEL)
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,80 @@
|
||||||
|
## 自定义关键字
|
||||||
|
|
||||||
|
### 为什么需要自定义关键字
|
||||||
|
|
||||||
|
在基于向量数据库和LLM进行问答对话的场景中,首先需要针对用户的提问从向量数据库中提取相关的内容片段,然后把用户提问和检索到的内容喂给LLM来生成回复。
|
||||||
|
在把文档切片存入向量数据库和基于用户提问到向量数据库搜索相关内容时,都需要一个嵌入模型来对文本进行嵌入来得到一个固定长度的向量。例如使用m3e-base来对
|
||||||
|
文本进行嵌入。
|
||||||
|
|
||||||
|
m3e-base和其他很多的embedding mode都是基于HuggingFaceEmbeddings实现的。HuggingFaceEmbeddings是基于sentence_transformers来实现的。
|
||||||
|
这部分详情请参考本项目中的kb_cache/base.py中EmbeddingsPool类的load_embeddings()函数中的代码。
|
||||||
|
|
||||||
|
sentence_transformers是Sentence Bert模型的实现,使用了Bert的基于wordpiece的tokenizer. Bert tokenizer在对文本进行tokenize时的结果
|
||||||
|
举例如下:
|
||||||
|
|
||||||
|
输入的文本(这里只是一个没分隔的一串字符):iphone13pro
|
||||||
|
生成的token id序列:[101, 8210, 8679, 10538, 102]
|
||||||
|
token到token id的映射:
|
||||||
|
[CLS]->101
|
||||||
|
iphone->8210
|
||||||
|
##13->8679
|
||||||
|
##pro->10538
|
||||||
|
[SEP]->102
|
||||||
|
这里可以看到iphone13pro被tokenize成为3个token, 分别是iphone, ##13, ##pro。 [CLS]和[SEP]是自动加入的特殊token。
|
||||||
|
|
||||||
|
输入的文本:中石油
|
||||||
|
生成的token id序列:[101, 704, 4767, 3779, 102]
|
||||||
|
token到token id的映射:
|
||||||
|
[CLS]->101
|
||||||
|
中->704
|
||||||
|
石->4767
|
||||||
|
油->3779
|
||||||
|
[SEP]->102
|
||||||
|
这里可以看到中石油被tokenize成了中,石,油三个token.
|
||||||
|
|
||||||
|
在上面的两个例子中,我们期望iphone13pro和中石油都被当做一个专有名词被tokenize成一个token。这样可以提高文本嵌入和搜索的精度。
|
||||||
|
如果进一步对嵌入模型进行精调时,这些专有名词做为不可分的关键字,可以做为一个token来得到更好的嵌入表示。
|
||||||
|
|
||||||
|
### 如何使用
|
||||||
|
1. 如果需要自定义关键字,首先准备一个关键字的文本文件,每一行是一个关键字。例如:
|
||||||
|
|
||||||
|
|
||||||
|
文件key_words.txt:
|
||||||
|
iphone13pro
|
||||||
|
中石油
|
||||||
|
|
||||||
|
2. 配置model_config.py
|
||||||
|
|
||||||
|
EMBEDDING_KEYWORD_FILE = "keywords.txt"
|
||||||
|
EMBEDDING_MODEL_OUTPUT_PATH = "output"
|
||||||
|
|
||||||
|
3. 运行keyword_preprocess.py,keywords文件中的每一个keyword做为一个独立的token, 整个embedding model的embedding及
|
||||||
|
tokenizer会被更新,并被存储到配置的目录中。这个目录和原始的embedding model的目录结构是一致的。使用运行后的目录做为embedding model,
|
||||||
|
tokenize的结果如下:
|
||||||
|
|
||||||
|
|
||||||
|
输入的文本(这里只是一个没分隔的一串字符):iphone13pro
|
||||||
|
生成的token id序列:[101, 21128, 102]
|
||||||
|
token到token id的映射:
|
||||||
|
[CLS]->101
|
||||||
|
iphone13pro->21128
|
||||||
|
[SEP]->102
|
||||||
|
|
||||||
|
输入的文本:中石油
|
||||||
|
生成的token id序列:[101, 21129, 102]
|
||||||
|
token到token id的映射:
|
||||||
|
[CLS]->101
|
||||||
|
中石油->21129
|
||||||
|
[SEP]->102
|
||||||
|
|
||||||
|
4. 配置model_config.py。然后按照原来的流程运行:
|
||||||
|
+ 使用第3步生成的目录做为embedding model的目录
|
||||||
|
```python
|
||||||
|
MODEL_PATH = {
|
||||||
|
"embed_model": {
|
||||||
|
"m3e-base": "output",
|
||||||
|
}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
+ 运行init_database.py来初始化数据库和向量数据库
|
||||||
|
+ 运行startup.py来启动程序
|
||||||
|
|
@ -0,0 +1,106 @@
|
||||||
|
import os
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from safetensors.torch import save_model
|
||||||
|
from sentence_transformers import SentenceTransformer
|
||||||
|
|
||||||
|
def get_keyword_embedding(bert_model, tokenizer, key_words):
|
||||||
|
tokenizer_output = tokenizer(key_words)
|
||||||
|
input_ids = torch.tensor(tokenizer_output['input_ids'])[:, 1:-1]
|
||||||
|
keyword_embedding = bert_model.embeddings.word_embeddings(input_ids)
|
||||||
|
keyword_embedding = torch.mean(keyword_embedding, 1)
|
||||||
|
return keyword_embedding
|
||||||
|
|
||||||
|
|
||||||
|
def add_keyword_to_model(model_name, key_words, output_model_path):
|
||||||
|
st_model = SentenceTransformer(model_name)
|
||||||
|
key_words_len = len(key_words)
|
||||||
|
word_embedding_model = st_model._first_module()
|
||||||
|
bert_model = word_embedding_model.auto_model
|
||||||
|
tokenizer = word_embedding_model.tokenizer
|
||||||
|
key_words_embedding = get_keyword_embedding(bert_model, tokenizer, key_words)
|
||||||
|
# key_words_embedding = st_model.encode(key_words)
|
||||||
|
|
||||||
|
embedding_weight = bert_model.embeddings.word_embeddings.weight
|
||||||
|
embedding_weight_len = len(embedding_weight)
|
||||||
|
tokenizer.add_tokens(key_words)
|
||||||
|
bert_model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=32)
|
||||||
|
|
||||||
|
# key_words_embedding_tensor = torch.from_numpy(key_words_embedding)
|
||||||
|
embedding_weight = bert_model.embeddings.word_embeddings.weight
|
||||||
|
with torch.no_grad():
|
||||||
|
embedding_weight[embedding_weight_len:embedding_weight_len+key_words_len, :] = key_words_embedding
|
||||||
|
|
||||||
|
if output_model_path:
|
||||||
|
os.makedirs(output_model_path, exist_ok=True)
|
||||||
|
word_embedding_model.save(output_model_path)
|
||||||
|
safetensors_file = os.path.join(output_model_path, "model.safetensors")
|
||||||
|
metadata = {'format': 'pt'}
|
||||||
|
save_model(bert_model, safetensors_file, metadata)
|
||||||
|
|
||||||
|
def add_keyword_file_to_model(model_name, keyword_file, output_model_path):
|
||||||
|
key_words = []
|
||||||
|
with open(keyword_file, "r") as f:
|
||||||
|
for line in f:
|
||||||
|
key_words.append(line.strip())
|
||||||
|
add_keyword_to_model(model_name, key_words, output_model_path)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
from configs import (
|
||||||
|
MODEL_PATH,
|
||||||
|
EMBEDDING_MODEL,
|
||||||
|
EMBEDDING_KEYWORD_FILE,
|
||||||
|
EMBEDDING_MODEL_OUTPUT_PATH
|
||||||
|
)
|
||||||
|
keyword_file = EMBEDDING_KEYWORD_FILE
|
||||||
|
model_name = MODEL_PATH["embed_model"][EMBEDDING_MODEL]
|
||||||
|
output_model_path = EMBEDDING_MODEL_OUTPUT_PATH
|
||||||
|
|
||||||
|
add_keyword_file_to_model(model_name, keyword_file, output_model_path)
|
||||||
|
|
||||||
|
# 以下为加入关键字前后tokenizer的测试用例对比
|
||||||
|
def print_token_ids(output, tokenizer, sentences):
|
||||||
|
for idx, ids in enumerate(output['input_ids']):
|
||||||
|
print(f'sentence={sentences[idx]}')
|
||||||
|
print(f'ids={ids}')
|
||||||
|
for id in ids:
|
||||||
|
decoded_id = tokenizer.decode(id)
|
||||||
|
print(f' {decoded_id}->{id}')
|
||||||
|
|
||||||
|
# sentences = [
|
||||||
|
# '任务中国',
|
||||||
|
# '中石油',
|
||||||
|
# '指令提示技术'
|
||||||
|
# 'Apple Watch Series 3 is good',
|
||||||
|
# 'Apple Watch Series 8 is good',
|
||||||
|
# 'Apple Watch Series is good',
|
||||||
|
# 'Apple Watch is good',
|
||||||
|
# 'iphone 13pro']
|
||||||
|
sentences = [
|
||||||
|
'指令提示技术',
|
||||||
|
'Apple Watch Series 3'
|
||||||
|
]
|
||||||
|
|
||||||
|
st_no_keywords = SentenceTransformer(model_name)
|
||||||
|
tokenizer_without_keywords = st_no_keywords.tokenizer
|
||||||
|
print("===== tokenizer with no keywords added =====")
|
||||||
|
output = tokenizer_without_keywords(sentences)
|
||||||
|
print_token_ids(output, tokenizer_without_keywords, sentences)
|
||||||
|
print(f'-------- embedding with no keywords added -----')
|
||||||
|
embeddings = st_no_keywords.encode(sentences)
|
||||||
|
print(embeddings)
|
||||||
|
|
||||||
|
st_with_keywords = SentenceTransformer(output_model_path)
|
||||||
|
tokenizer_with_keywords = st_with_keywords.tokenizer
|
||||||
|
print("===== tokenizer with keyword added =====")
|
||||||
|
output = tokenizer_with_keywords(sentences)
|
||||||
|
print_token_ids(output, tokenizer_with_keywords, sentences)
|
||||||
|
|
||||||
|
print(f'-------- embedding with keywords added -----')
|
||||||
|
embeddings = st_with_keywords.encode(sentences)
|
||||||
|
print(embeddings)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Loading…
Reference in New Issue