add self-defined class MyFAISS
This commit is contained in:
parent
89b986c3bc
commit
f1f742ce44
|
|
@ -1,5 +1,5 @@
|
|||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||||
from langchain.vectorstores import FAISS
|
||||
from vectorstores import MyFAISS
|
||||
from langchain.document_loaders import UnstructuredFileLoader, TextLoader, CSVLoader
|
||||
from configs.model_config import *
|
||||
import datetime
|
||||
|
|
@ -32,7 +32,7 @@ HuggingFaceEmbeddings.__hash__ = _embeddings_hash
|
|||
# will keep CACHED_VS_NUM of vector store caches
|
||||
@lru_cache(CACHED_VS_NUM)
|
||||
def load_vector_store(vs_path, embeddings):
|
||||
return FAISS.load_local(vs_path, embeddings)
|
||||
return MyFAISS.load_local(vs_path, embeddings)
|
||||
|
||||
|
||||
def tree(filepath, ignore_dir_names=None, ignore_file_names=None):
|
||||
|
|
@ -107,78 +107,6 @@ def generate_prompt(related_docs: List[str],
|
|||
return prompt
|
||||
|
||||
|
||||
def seperate_list(ls: List[int]) -> List[List[int]]:
|
||||
lists = []
|
||||
ls1 = [ls[0]]
|
||||
for i in range(1, len(ls)):
|
||||
if ls[i - 1] + 1 == ls[i]:
|
||||
ls1.append(ls[i])
|
||||
else:
|
||||
lists.append(ls1)
|
||||
ls1 = [ls[i]]
|
||||
lists.append(ls1)
|
||||
return lists
|
||||
|
||||
|
||||
def similarity_search_with_score_by_vector(
|
||||
self, embedding: List[float], k: int = 4
|
||||
) -> List[Tuple[Document, float]]:
|
||||
scores, indices = self.index.search(np.array([embedding], dtype=np.float32), k)
|
||||
docs = []
|
||||
id_set = set()
|
||||
store_len = len(self.index_to_docstore_id)
|
||||
for j, i in enumerate(indices[0]):
|
||||
if i == -1 or 0 < self.score_threshold < scores[0][j]:
|
||||
# This happens when not enough docs are returned.
|
||||
continue
|
||||
_id = self.index_to_docstore_id[i]
|
||||
doc = self.docstore.search(_id)
|
||||
if not self.chunk_conent:
|
||||
if not isinstance(doc, Document):
|
||||
raise ValueError(f"Could not find document for id {_id}, got {doc}")
|
||||
doc.metadata["score"] = int(scores[0][j])
|
||||
docs.append(doc)
|
||||
continue
|
||||
id_set.add(i)
|
||||
docs_len = len(doc.page_content)
|
||||
for k in range(1, max(i, store_len - i)):
|
||||
break_flag = False
|
||||
for l in [i + k, i - k]:
|
||||
if 0 <= l < len(self.index_to_docstore_id):
|
||||
_id0 = self.index_to_docstore_id[l]
|
||||
doc0 = self.docstore.search(_id0)
|
||||
if docs_len + len(doc0.page_content) > self.chunk_size:
|
||||
break_flag = True
|
||||
break
|
||||
elif doc0.metadata["source"] == doc.metadata["source"]:
|
||||
docs_len += len(doc0.page_content)
|
||||
id_set.add(l)
|
||||
if break_flag:
|
||||
break
|
||||
if not self.chunk_conent:
|
||||
return docs
|
||||
if len(id_set) == 0 and self.score_threshold > 0:
|
||||
return []
|
||||
id_list = sorted(list(id_set))
|
||||
id_lists = seperate_list(id_list)
|
||||
for id_seq in id_lists:
|
||||
for id in id_seq:
|
||||
if id == id_seq[0]:
|
||||
_id = self.index_to_docstore_id[id]
|
||||
doc = self.docstore.search(_id)
|
||||
else:
|
||||
_id0 = self.index_to_docstore_id[id]
|
||||
doc0 = self.docstore.search(_id0)
|
||||
doc.page_content += " " + doc0.page_content
|
||||
if not isinstance(doc, Document):
|
||||
raise ValueError(f"Could not find document for id {_id}, got {doc}")
|
||||
doc_score = min([scores[0][id] for id in [indices[0].tolist().index(i) for i in id_seq if i in indices[0]]])
|
||||
doc.metadata["score"] = int(doc_score)
|
||||
docs.append(doc)
|
||||
torch_gc()
|
||||
return docs
|
||||
|
||||
|
||||
def search_result2docs(search_results):
|
||||
docs = []
|
||||
for result in search_results:
|
||||
|
|
@ -263,7 +191,7 @@ class LocalDocQA:
|
|||
if not vs_path:
|
||||
vs_path = os.path.join(VS_ROOT_PATH,
|
||||
f"""{"".join(lazy_pinyin(os.path.splitext(file)[0]))}_FAISS_{datetime.datetime.now().strftime("%Y%m%d_%H%M%S")}""")
|
||||
vector_store = FAISS.from_documents(docs, self.embeddings) # docs 为Document列表
|
||||
vector_store = MyFAISS.from_documents(docs, self.embeddings) # docs 为Document列表
|
||||
torch_gc()
|
||||
|
||||
vector_store.save_local(vs_path)
|
||||
|
|
@ -281,11 +209,11 @@ class LocalDocQA:
|
|||
if not one_content_segmentation:
|
||||
text_splitter = ChineseTextSplitter(pdf=False, sentence_size=sentence_size)
|
||||
docs = text_splitter.split_documents(docs)
|
||||
if os.path.isdir(vs_path) and os.path.isfile(vs_path+"/index.faiss"):
|
||||
if os.path.isdir(vs_path) and os.path.isfile(vs_path + "/index.faiss"):
|
||||
vector_store = load_vector_store(vs_path, self.embeddings)
|
||||
vector_store.add_documents(docs)
|
||||
else:
|
||||
vector_store = FAISS.from_documents(docs, self.embeddings) ##docs 为Document列表
|
||||
vector_store = MyFAISS.from_documents(docs, self.embeddings) ##docs 为Document列表
|
||||
torch_gc()
|
||||
vector_store.save_local(vs_path)
|
||||
return vs_path, [one_title]
|
||||
|
|
@ -295,13 +223,12 @@ class LocalDocQA:
|
|||
|
||||
def get_knowledge_based_answer(self, query, vs_path, chat_history=[], streaming: bool = STREAMING):
|
||||
vector_store = load_vector_store(vs_path, self.embeddings)
|
||||
FAISS.similarity_search_with_score_by_vector = similarity_search_with_score_by_vector
|
||||
vector_store.chunk_size = self.chunk_size
|
||||
vector_store.chunk_conent = self.chunk_conent
|
||||
vector_store.score_threshold = self.score_threshold
|
||||
related_docs_with_score = vector_store.similarity_search_with_score(query, k=self.top_k)
|
||||
torch_gc()
|
||||
if len(related_docs_with_score)>0:
|
||||
if len(related_docs_with_score) > 0:
|
||||
prompt = generate_prompt(related_docs_with_score, query)
|
||||
else:
|
||||
prompt = query
|
||||
|
|
@ -326,7 +253,7 @@ class LocalDocQA:
|
|||
score_threshold=VECTOR_SEARCH_SCORE_THRESHOLD,
|
||||
vector_search_top_k=VECTOR_SEARCH_TOP_K, chunk_size=CHUNK_SIZE):
|
||||
vector_store = load_vector_store(vs_path, self.embeddings)
|
||||
FAISS.similarity_search_with_score_by_vector = similarity_search_with_score_by_vector
|
||||
# FAISS.similarity_search_with_score_by_vector = similarity_search_with_score_by_vector
|
||||
vector_store.chunk_conent = chunk_conent
|
||||
vector_store.score_threshold = score_threshold
|
||||
vector_store.chunk_size = chunk_size
|
||||
|
|
@ -381,8 +308,8 @@ if __name__ == "__main__":
|
|||
streaming=True):
|
||||
print(resp["result"][last_print_len:], end="", flush=True)
|
||||
last_print_len = len(resp["result"])
|
||||
source_text = [f"""出处 [{inum + 1}] {doc.metadata['source'] if doc.metadata['source'].startswith("http")
|
||||
else os.path.split(doc.metadata['source'])[-1]}:\n\n{doc.page_content}\n\n"""
|
||||
source_text = [f"""出处 [{inum + 1}] {doc.metadata['source'] if doc.metadata['source'].startswith("http")
|
||||
else os.path.split(doc.metadata['source'])[-1]}:\n\n{doc.page_content}\n\n"""
|
||||
# f"""相关度:{doc.metadata['score']}\n\n"""
|
||||
for inum, doc in
|
||||
enumerate(resp["source_documents"])]
|
||||
|
|
|
|||
|
|
@ -0,0 +1,114 @@
|
|||
from langchain.vectorstores import FAISS
|
||||
from langchain.vectorstores.base import VectorStore
|
||||
from langchain.vectorstores.faiss import dependable_faiss_import
|
||||
from typing import Any, Callable, List, Tuple, Dict
|
||||
from langchain.docstore.base import Docstore
|
||||
from langchain.docstore.document import Document
|
||||
import numpy as np
|
||||
|
||||
|
||||
class MyFAISS(FAISS, VectorStore):
|
||||
def __init__(
|
||||
self,
|
||||
embedding_function: Callable,
|
||||
index: Any,
|
||||
docstore: Docstore,
|
||||
index_to_docstore_id: Dict[int, str],
|
||||
normalize_L2: bool = False,
|
||||
):
|
||||
super().__init__(embedding_function=embedding_function,
|
||||
index=index,
|
||||
docstore=docstore,
|
||||
index_to_docstore_id=index_to_docstore_id,
|
||||
normalize_L2=normalize_L2)
|
||||
|
||||
# def similarity_search_with_score_by_vector(
|
||||
# self, embedding: List[float], k: int = 4
|
||||
# ) -> List[Tuple[Document, float]]:
|
||||
# faiss = dependable_faiss_import()
|
||||
# vector = np.array([embedding], dtype=np.float32)
|
||||
# if self._normalize_L2:
|
||||
# faiss.normalize_L2(vector)
|
||||
# scores, indices = self.index.search(vector, k)
|
||||
# docs = []
|
||||
# for j, i in enumerate(indices[0]):
|
||||
# if i == -1:
|
||||
# # This happens when not enough docs are returned.
|
||||
# continue
|
||||
# _id = self.index_to_docstore_id[i]
|
||||
# doc = self.docstore.search(_id)
|
||||
# if not isinstance(doc, Document):
|
||||
# raise ValueError(f"Could not find document for id {_id}, got {doc}")
|
||||
#
|
||||
# docs.append((doc, scores[0][j]))
|
||||
# return docs
|
||||
|
||||
def seperate_list(self, ls: List[int]) -> List[List[int]]:
|
||||
# TODO: 增加是否属于同一文档的判断
|
||||
lists = []
|
||||
ls1 = [ls[0]]
|
||||
for i in range(1, len(ls)):
|
||||
if ls[i - 1] + 1 == ls[i]:
|
||||
ls1.append(ls[i])
|
||||
else:
|
||||
lists.append(ls1)
|
||||
ls1 = [ls[i]]
|
||||
lists.append(ls1)
|
||||
return lists
|
||||
|
||||
def similarity_search_with_score_by_vector(
|
||||
self, embedding: List[float], k: int = 4
|
||||
) -> List[Document]:
|
||||
scores, indices = self.index.search(np.array([embedding], dtype=np.float32), k)
|
||||
docs = []
|
||||
id_set = set()
|
||||
store_len = len(self.index_to_docstore_id)
|
||||
for j, i in enumerate(indices[0]):
|
||||
if i == -1 or 0 < self.score_threshold < scores[0][j]:
|
||||
# This happens when not enough docs are returned.
|
||||
continue
|
||||
_id = self.index_to_docstore_id[i]
|
||||
doc = self.docstore.search(_id)
|
||||
if (not self.chunk_conent) or ("add_context" in doc.metadata and not doc.metadata["add_context"]):
|
||||
if not isinstance(doc, Document):
|
||||
raise ValueError(f"Could not find document for id {_id}, got {doc}")
|
||||
doc.metadata["score"] = int(scores[0][j])
|
||||
docs.append(doc)
|
||||
continue
|
||||
id_set.add(i)
|
||||
docs_len = len(doc.page_content)
|
||||
for k in range(1, max(i, store_len - i)):
|
||||
break_flag = False
|
||||
for l in [i + k, i - k]:
|
||||
if 0 <= l < len(self.index_to_docstore_id):
|
||||
_id0 = self.index_to_docstore_id[l]
|
||||
doc0 = self.docstore.search(_id0)
|
||||
if docs_len + len(doc0.page_content) > self.chunk_size:
|
||||
break_flag = True
|
||||
break
|
||||
elif doc0.metadata["source"] == doc.metadata["source"]:
|
||||
docs_len += len(doc0.page_content)
|
||||
id_set.add(l)
|
||||
if break_flag:
|
||||
break
|
||||
if (not self.chunk_conent) or ("add_context" in doc.metadata and doc.metadata["add_context"] == False):
|
||||
return docs
|
||||
if len(id_set) == 0 and self.score_threshold > 0:
|
||||
return []
|
||||
id_list = sorted(list(id_set))
|
||||
id_lists = self.seperate_list(id_list)
|
||||
for id_seq in id_lists:
|
||||
for id in id_seq:
|
||||
if id == id_seq[0]:
|
||||
_id = self.index_to_docstore_id[id]
|
||||
doc = self.docstore.search(_id)
|
||||
else:
|
||||
_id0 = self.index_to_docstore_id[id]
|
||||
doc0 = self.docstore.search(_id0)
|
||||
doc.page_content += " " + doc0.page_content
|
||||
if not isinstance(doc, Document):
|
||||
raise ValueError(f"Could not find document for id {_id}, got {doc}")
|
||||
doc_score = min([scores[0][id] for id in [indices[0].tolist().index(i) for i in id_seq if i in indices[0]]])
|
||||
doc.metadata["score"] = int(doc_score)
|
||||
docs.append(doc)
|
||||
return docs
|
||||
|
|
@ -0,0 +1 @@
|
|||
from .MyFAISS import MyFAISS
|
||||
Loading…
Reference in New Issue