Merge branch 'dev_fastchat' into pr1037_pg_vs

This commit is contained in:
liunux4odoo 2023-08-10 14:21:37 +08:00
commit fd247f4657
5 changed files with 158 additions and 145 deletions

View File

@ -6,7 +6,7 @@ sys.path.append(os.path.dirname(os.path.dirname(__file__)))
from configs.model_config import NLTK_DATA_PATH, OPEN_CROSS_DOMAIN from configs.model_config import NLTK_DATA_PATH, OPEN_CROSS_DOMAIN
import argparse import argparse
import uvicorn import uvicorn
from fastapi import FastAPI from fastapi_offline import FastAPIOffline as FastAPI
from fastapi.middleware.cors import CORSMiddleware from fastapi.middleware.cors import CORSMiddleware
from starlette.responses import RedirectResponse from starlette.responses import RedirectResponse
from server.chat import (chat, knowledge_base_chat, openai_chat, from server.chat import (chat, knowledge_base_chat, openai_chat,
@ -104,6 +104,11 @@ def create_app():
tags=["Knowledge Base Management"], tags=["Knowledge Base Management"],
summary="根据content中文档重建向量库流式输出处理进度。" summary="根据content中文档重建向量库流式输出处理进度。"
)(recreate_vector_store) )(recreate_vector_store)
# init local vector store info to database
from webui_pages.utils import init_vs_database
init_vs_database()
return app return app

View File

@ -13,38 +13,19 @@ from webui_pages import *
api = ApiRequest(base_url="http://127.0.0.1:7861", no_remote_api=False) api = ApiRequest(base_url="http://127.0.0.1:7861", no_remote_api=False)
if __name__ == "__main__": if __name__ == "__main__":
st.set_page_config("langchain-chatglm WebUI", layout="wide") # init local vector store info to database
init_vs_database()
st.set_page_config("langchain-chatglm WebUI")
if not chat_box.chat_inited: if not chat_box.chat_inited:
st.toast(f"欢迎使用 [`Langchain-Chatglm`](https://github.com/chatchat-space/langchain-chatglm) ! \n\n当前使用模型`{LLM_MODEL}`, 您可以开始提问了.") st.toast(f"欢迎使用 [`Langchain-Chatglm`](https://github.com/chatchat-space/langchain-chatglm) ! \n\n当前使用模型`{LLM_MODEL}`, 您可以开始提问了.")
st.toast(" ") st.toast(" ")
# pages = {"对话1": {"icon": "chat",
# "func": dialogue_page,
# },
# "对话2": {"icon": "chat",
# "func": dialogue_page,
# },
# "对话3": {"icon": "chat",
# "func": dialogue_page,
# },
# "新建对话": {"icon": "plus-circle",
# "func": dialogue_page,
# },
# "---": {"icon": None,
# "func": None},
# "知识库管理": {"icon": "database-fill-gear",
# "func": knowledge_base_page,
# },
# "模型配置": {"icon": "gear",
# "func": model_config_page,
# }
# }
pages = {"对话": {"icon": "chat", pages = {"对话": {"icon": "chat",
"func": dialogue_page, "func": dialogue_page,
}, },
"知识库管理": {"icon": "database-fill-gear", "知识库管理": {"icon": "hdd-stack",
"func": knowledge_base_page, "func": knowledge_base_page,
}, },
"模型配置": {"icon": "gear", "模型配置": {"icon": "gear",

View File

@ -59,8 +59,9 @@ def dialogue_page(api: ApiRequest):
if cols[1].button("Clear"): if cols[1].button("Clear"):
chat_box.reset_history() chat_box.reset_history()
if cols[2].button("Delete"): if cols[2].button("Delete", disabled=len(chat_list) <= 1):
chat_box.del_chat_name(cur_chat_name, disabled=len(chat_list) <= 1) chat_box.del_chat_name(cur_chat_name)
st.experimental_rerun()
def on_mode_change(): def on_mode_change():
mode = st.session_state.dialogue_mode mode = st.session_state.dialogue_mode

View File

@ -4,110 +4,29 @@ from webui_pages.utils import *
from st_aggrid import AgGrid from st_aggrid import AgGrid
from st_aggrid.grid_options_builder import GridOptionsBuilder from st_aggrid.grid_options_builder import GridOptionsBuilder
import pandas as pd import pandas as pd
from server.knowledge_base.utils import get_file_path, list_kbs_from_folder, list_docs_from_folder from server.knowledge_base.utils import get_file_path
from server.knowledge_base.kb_service.base import KBServiceFactory
from server.db.repository.knowledge_base_repository import get_kb_detail
from server.db.repository.knowledge_file_repository import get_file_detail
# from streamlit_chatbox import * # from streamlit_chatbox import *
from typing import Literal, Dict from typing import Literal, Dict, Tuple
SENTENCE_SIZE = 100 SENTENCE_SIZE = 100
def get_kb_details(api: ApiRequest) -> pd.DataFrame:
kbs_in_folder = list_kbs_from_folder()
kbs_in_db = api.list_knowledge_bases()
result = {}
for kb in kbs_in_folder:
result[kb] = {
"kb_name": kb,
"vs_type": "",
"embed_model": "",
"file_count": 0,
"create_time": None,
"in_folder": True,
"in_db": False,
}
for kb in kbs_in_db:
kb_detail = get_kb_detail(kb)
if kb_detail:
kb_detail["in_db"] = True
if kb in result:
result[kb].update(kb_detail)
else:
kb_detail["in_folder"] = False
result[kb] = kb_detail
df = pd.DataFrame(result.values(), columns=[
"kb_name",
"vs_type",
"embed_model",
"file_count",
"create_time",
"in_folder",
"in_db",
])
df.insert(0, "No", range(1, len(df) + 1))
return df
def get_kb_doc_details(api: ApiRequest, kb: str) -> pd.DataFrame:
docs_in_folder = list_docs_from_folder(kb)
docs_in_db = api.list_kb_docs(kb)
result = {}
for doc in docs_in_folder:
result[doc] = {
"kb_name": kb,
"file_name": doc,
"file_ext": os.path.splitext(doc)[-1],
"file_version": 0,
"document_loader": "",
"text_splitter": "",
"create_time": None,
"in_folder": True,
"in_db": False,
}
for doc in docs_in_db:
doc_detail = get_file_detail(kb, doc)
if doc_detail:
doc_detail["in_db"] = True
if doc in result:
result[doc].update(doc_detail)
else:
doc_detail["in_folder"] = False
result[doc] = doc_detail
df = pd.DataFrame(result.values(), columns=[
"kb_name",
"file_name",
"file_ext",
"file_version",
"document_loader",
"text_splitter",
"create_time",
"in_folder",
"in_db",
])
df.insert(0, "No", range(1, len(df) + 1))
return df
def config_aggrid( def config_aggrid(
df: pd.DataFrame, df: pd.DataFrame,
titles: Dict[str, str] = {}, columns: Dict[Tuple[str, str], Dict] = {},
selection_mode: Literal["single", "multiple", "disabled"] = "single", selection_mode: Literal["single", "multiple", "disabled"] = "single",
use_checkbox: bool = False, use_checkbox: bool = False,
) -> GridOptionsBuilder: ) -> GridOptionsBuilder:
gb = GridOptionsBuilder.from_dataframe(df) gb = GridOptionsBuilder.from_dataframe(df)
gb.configure_column("No", width=50) gb.configure_column("No", width=40)
for k, v in titles.items(): for (col, header), kw in columns.items():
gb.configure_column(k, v, maxWidth=100, wrapHeaderText=True) gb.configure_column(col, header, wrapHeaderText=True, **kw)
gb.configure_selection(selection_mode, use_checkbox, pre_selected_rows=[0]) gb.configure_selection(
selection_mode,
use_checkbox,
# pre_selected_rows=st.session_state.get("selected_rows", [0]),
)
return gb return gb
@ -142,22 +61,24 @@ def knowledge_base_page(api: ApiRequest):
else: else:
st.error(f"名为 {new_kb_name} 的知识库不存在!") st.error(f"名为 {new_kb_name} 的知识库不存在!")
st.write("知识库") st.write("知识库列表")
if kb_list: if kb_list:
gb = config_aggrid( gb = config_aggrid(
kb_details, kb_details,
{ {
"kb_name": "知识库名称", ("kb_name", "知识库名称"): {"maxWidth": 150},
"vs_type": "知识库类型", ("vs_type", "知识库类型"): {"maxWidth": 100},
"embed_model": "嵌入模型", ("embed_model", "嵌入模型"): {"maxWidth": 100},
"file_count": "文档数量", ("file_count", "文档数量"): {"maxWidth": 60},
"create_time": "创建时间", ("create_time", "创建时间"): {"maxWidth": 150},
"in_folder": "存在于文件夹", ("in_folder", "文件夹"): {"maxWidth": 50},
"in_db": "存在于数据库", ("in_db", "数据库"): {"maxWidth": 50},
} }
) )
kb_grid = AgGrid(kb_details, gb.build()) kb_grid = AgGrid(kb_details, gb.build())
# st.write(kb_grid)
if kb_grid.selected_rows: if kb_grid.selected_rows:
# st.session_state.selected_rows = [x["nIndex"] for x in kb_grid.selected_rows]
kb = kb_grid.selected_rows[0]["kb_name"] kb = kb_grid.selected_rows[0]["kb_name"]
with st.sidebar: with st.sidebar:
@ -191,21 +112,21 @@ def knowledge_base_page(api: ApiRequest):
progress.progress(d["finished"] / d["t]otal"], f"正在处理: {d['doc']}") progress.progress(d["finished"] / d["t]otal"], f"正在处理: {d['doc']}")
# 知识库详情 # 知识库详情
st.subheader(f"知识库 {kb} 详情") st.write(f"知识库 {kb} 详情:")
doc_details = get_kb_doc_details(api, kb) doc_details = get_kb_doc_details(api, kb)
doc_details.drop(columns=["kb_name"], inplace=True) doc_details.drop(columns=["kb_name"], inplace=True)
gb = config_aggrid( gb = config_aggrid(
doc_details, doc_details,
{ {
"file_name": "文档名称", ("file_name", "文档名称"): {"maxWidth": 150},
"file_ext": "文档类型", ("file_ext", "文档类型"): {"maxWidth": 50},
"file_version": "文档版本", ("file_version", "文档版本"): {"maxWidth": 50},
"document_loader": "文档加载器", ("document_loader", "文档加载器"): {"maxWidth": 150},
"text_splitter": "分词器", ("text_splitter", "分词器"): {"maxWidth": 150},
"create_time": "创建时间", ("create_time", "创建时间"): {"maxWidth": 150},
"in_folder": "存在于文件夹", ("in_folder", "文件夹"): {"maxWidth": 50},
"in_db": "存在于数据库", ("in_db", "数据库"): {"maxWidth": 50},
}, },
"multiple", "multiple",
) )
@ -239,5 +160,3 @@ def knowledge_base_page(api: ApiRequest):
ret = api.delete_kb_doc(kb, row["file_name"], True) ret = api.delete_kb_doc(kb, row["file_name"], True)
st.toast(ret["msg"]) st.toast(ret["msg"])
st.experimental_rerun() st.experimental_rerun()
st.write("本文档包含以下知识条目:(待定内容)")

View File

@ -17,7 +17,10 @@ from fastapi.responses import StreamingResponse
import contextlib import contextlib
import json import json
from io import BytesIO from io import BytesIO
from server.knowledge_base.utils import list_kbs_from_folder import pandas as pd
from server.knowledge_base.utils import list_kbs_from_folder, list_docs_from_folder
from server.db.repository.knowledge_base_repository import get_kb_detail
from server.db.repository.knowledge_file_repository import get_file_detail
def set_httpx_timeout(timeout=60.0): def set_httpx_timeout(timeout=60.0):
@ -529,11 +532,120 @@ class ApiRequest:
return self._httpx_stream2generator(response, as_json=True) return self._httpx_stream2generator(response, as_json=True)
if __name__ == "__main__": def get_kb_details(api: ApiRequest) -> pd.DataFrame:
kbs_in_folder = list_kbs_from_folder()
kbs_in_db = api.list_knowledge_bases()
result = {}
for kb in kbs_in_folder:
result[kb] = {
"kb_name": kb,
"vs_type": "",
"embed_model": "",
"file_count": 0,
"create_time": None,
"in_folder": True,
"in_db": False,
}
for kb in kbs_in_db:
kb_detail = get_kb_detail(kb)
if kb_detail:
kb_detail["in_db"] = True
if kb in result:
result[kb].update(kb_detail)
else:
kb_detail["in_folder"] = False
result[kb] = kb_detail
df = pd.DataFrame(result.values(), columns=[
"kb_name",
"vs_type",
"embed_model",
"file_count",
"create_time",
"in_folder",
"in_db",
])
df.insert(0, "No", range(1, len(df) + 1))
return df
def get_kb_doc_details(api: ApiRequest, kb: str) -> pd.DataFrame:
docs_in_folder = list_docs_from_folder(kb)
docs_in_db = api.list_kb_docs(kb)
result = {}
for doc in docs_in_folder:
result[doc] = {
"kb_name": kb,
"file_name": doc,
"file_ext": os.path.splitext(doc)[-1],
"file_version": 0,
"document_loader": "",
"text_splitter": "",
"create_time": None,
"in_folder": True,
"in_db": False,
}
for doc in docs_in_db:
doc_detail = get_file_detail(kb, doc)
if doc_detail:
doc_detail["in_db"] = True
if doc in result:
result[doc].update(doc_detail)
else:
doc_detail["in_folder"] = False
result[doc] = doc_detail
df = pd.DataFrame(result.values(), columns=[
"kb_name",
"file_name",
"file_ext",
"file_version",
"document_loader",
"text_splitter",
"create_time",
"in_folder",
"in_db",
])
df.insert(0, "No", range(1, len(df) + 1))
return df
def init_vs_database(recreate_vs: bool = False):
'''
init local vector store info to database
'''
from server.db.base import Base, engine from server.db.base import Base, engine
from server.db.repository.knowledge_base_repository import add_kb_to_db, kb_exists
from server.db.repository.knowledge_file_repository import add_doc_to_db
from server.knowledge_base.utils import KnowledgeFile
Base.metadata.create_all(bind=engine) Base.metadata.create_all(bind=engine)
if recreate_vs:
api = ApiRequest(no_remote_api=True)
for kb in list_kbs_from_folder():
for t in api.recreate_vector_store(kb):
print(t)
else: # add vs info to db only
for kb in list_kbs_from_folder():
if not kb_exists(kb):
add_kb_to_db(kb, "faiss", EMBEDDING_MODEL)
for doc in list_docs_from_folder(kb):
try:
kb_file = KnowledgeFile(doc, kb)
add_doc_to_db(kb_file)
except Exception as e:
print(e)
if __name__ == "__main__":
api = ApiRequest(no_remote_api=True) api = ApiRequest(no_remote_api=True)
# init vector store database
init_vs_database()
# print(api.chat_fastchat( # print(api.chat_fastchat(
# messages=[{"role": "user", "content": "hello"}] # messages=[{"role": "user", "content": "hello"}]
@ -552,8 +664,3 @@ if __name__ == "__main__":
# print(t) # print(t)
# print(api.list_knowledge_bases()) # print(api.list_knowledge_bases())
# recreate all vector store
for kb in list_kbs_from_folder():
for t in api.recreate_vector_store(kb):
print(t)