Merge branch 'dev_fastchat' into pr1037_pg_vs
This commit is contained in:
commit
fd247f4657
|
|
@ -6,7 +6,7 @@ sys.path.append(os.path.dirname(os.path.dirname(__file__)))
|
||||||
from configs.model_config import NLTK_DATA_PATH, OPEN_CROSS_DOMAIN
|
from configs.model_config import NLTK_DATA_PATH, OPEN_CROSS_DOMAIN
|
||||||
import argparse
|
import argparse
|
||||||
import uvicorn
|
import uvicorn
|
||||||
from fastapi import FastAPI
|
from fastapi_offline import FastAPIOffline as FastAPI
|
||||||
from fastapi.middleware.cors import CORSMiddleware
|
from fastapi.middleware.cors import CORSMiddleware
|
||||||
from starlette.responses import RedirectResponse
|
from starlette.responses import RedirectResponse
|
||||||
from server.chat import (chat, knowledge_base_chat, openai_chat,
|
from server.chat import (chat, knowledge_base_chat, openai_chat,
|
||||||
|
|
@ -104,6 +104,11 @@ def create_app():
|
||||||
tags=["Knowledge Base Management"],
|
tags=["Knowledge Base Management"],
|
||||||
summary="根据content中文档重建向量库,流式输出处理进度。"
|
summary="根据content中文档重建向量库,流式输出处理进度。"
|
||||||
)(recreate_vector_store)
|
)(recreate_vector_store)
|
||||||
|
|
||||||
|
# init local vector store info to database
|
||||||
|
from webui_pages.utils import init_vs_database
|
||||||
|
init_vs_database()
|
||||||
|
|
||||||
return app
|
return app
|
||||||
|
|
||||||
|
|
||||||
|
|
|
||||||
29
webui.py
29
webui.py
|
|
@ -13,38 +13,19 @@ from webui_pages import *
|
||||||
api = ApiRequest(base_url="http://127.0.0.1:7861", no_remote_api=False)
|
api = ApiRequest(base_url="http://127.0.0.1:7861", no_remote_api=False)
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
st.set_page_config("langchain-chatglm WebUI", layout="wide")
|
# init local vector store info to database
|
||||||
|
init_vs_database()
|
||||||
|
|
||||||
|
st.set_page_config("langchain-chatglm WebUI")
|
||||||
|
|
||||||
if not chat_box.chat_inited:
|
if not chat_box.chat_inited:
|
||||||
st.toast(f"欢迎使用 [`Langchain-Chatglm`](https://github.com/chatchat-space/langchain-chatglm) ! \n\n当前使用模型`{LLM_MODEL}`, 您可以开始提问了.")
|
st.toast(f"欢迎使用 [`Langchain-Chatglm`](https://github.com/chatchat-space/langchain-chatglm) ! \n\n当前使用模型`{LLM_MODEL}`, 您可以开始提问了.")
|
||||||
st.toast(" ")
|
st.toast(" ")
|
||||||
|
|
||||||
# pages = {"对话1": {"icon": "chat",
|
|
||||||
# "func": dialogue_page,
|
|
||||||
# },
|
|
||||||
# "对话2": {"icon": "chat",
|
|
||||||
# "func": dialogue_page,
|
|
||||||
# },
|
|
||||||
# "对话3": {"icon": "chat",
|
|
||||||
# "func": dialogue_page,
|
|
||||||
# },
|
|
||||||
# "新建对话": {"icon": "plus-circle",
|
|
||||||
# "func": dialogue_page,
|
|
||||||
# },
|
|
||||||
# "---": {"icon": None,
|
|
||||||
# "func": None},
|
|
||||||
# "知识库管理": {"icon": "database-fill-gear",
|
|
||||||
# "func": knowledge_base_page,
|
|
||||||
# },
|
|
||||||
# "模型配置": {"icon": "gear",
|
|
||||||
# "func": model_config_page,
|
|
||||||
# }
|
|
||||||
# }
|
|
||||||
|
|
||||||
pages = {"对话": {"icon": "chat",
|
pages = {"对话": {"icon": "chat",
|
||||||
"func": dialogue_page,
|
"func": dialogue_page,
|
||||||
},
|
},
|
||||||
"知识库管理": {"icon": "database-fill-gear",
|
"知识库管理": {"icon": "hdd-stack",
|
||||||
"func": knowledge_base_page,
|
"func": knowledge_base_page,
|
||||||
},
|
},
|
||||||
"模型配置": {"icon": "gear",
|
"模型配置": {"icon": "gear",
|
||||||
|
|
|
||||||
|
|
@ -59,8 +59,9 @@ def dialogue_page(api: ApiRequest):
|
||||||
if cols[1].button("Clear"):
|
if cols[1].button("Clear"):
|
||||||
chat_box.reset_history()
|
chat_box.reset_history()
|
||||||
|
|
||||||
if cols[2].button("Delete"):
|
if cols[2].button("Delete", disabled=len(chat_list) <= 1):
|
||||||
chat_box.del_chat_name(cur_chat_name, disabled=len(chat_list) <= 1)
|
chat_box.del_chat_name(cur_chat_name)
|
||||||
|
st.experimental_rerun()
|
||||||
|
|
||||||
def on_mode_change():
|
def on_mode_change():
|
||||||
mode = st.session_state.dialogue_mode
|
mode = st.session_state.dialogue_mode
|
||||||
|
|
|
||||||
|
|
@ -4,110 +4,29 @@ from webui_pages.utils import *
|
||||||
from st_aggrid import AgGrid
|
from st_aggrid import AgGrid
|
||||||
from st_aggrid.grid_options_builder import GridOptionsBuilder
|
from st_aggrid.grid_options_builder import GridOptionsBuilder
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from server.knowledge_base.utils import get_file_path, list_kbs_from_folder, list_docs_from_folder
|
from server.knowledge_base.utils import get_file_path
|
||||||
from server.knowledge_base.kb_service.base import KBServiceFactory
|
|
||||||
from server.db.repository.knowledge_base_repository import get_kb_detail
|
|
||||||
from server.db.repository.knowledge_file_repository import get_file_detail
|
|
||||||
# from streamlit_chatbox import *
|
# from streamlit_chatbox import *
|
||||||
from typing import Literal, Dict
|
from typing import Literal, Dict, Tuple
|
||||||
|
|
||||||
|
|
||||||
SENTENCE_SIZE = 100
|
SENTENCE_SIZE = 100
|
||||||
|
|
||||||
|
|
||||||
def get_kb_details(api: ApiRequest) -> pd.DataFrame:
|
|
||||||
kbs_in_folder = list_kbs_from_folder()
|
|
||||||
kbs_in_db = api.list_knowledge_bases()
|
|
||||||
result = {}
|
|
||||||
|
|
||||||
for kb in kbs_in_folder:
|
|
||||||
result[kb] = {
|
|
||||||
"kb_name": kb,
|
|
||||||
"vs_type": "",
|
|
||||||
"embed_model": "",
|
|
||||||
"file_count": 0,
|
|
||||||
"create_time": None,
|
|
||||||
"in_folder": True,
|
|
||||||
"in_db": False,
|
|
||||||
}
|
|
||||||
|
|
||||||
for kb in kbs_in_db:
|
|
||||||
kb_detail = get_kb_detail(kb)
|
|
||||||
if kb_detail:
|
|
||||||
kb_detail["in_db"] = True
|
|
||||||
if kb in result:
|
|
||||||
result[kb].update(kb_detail)
|
|
||||||
else:
|
|
||||||
kb_detail["in_folder"] = False
|
|
||||||
result[kb] = kb_detail
|
|
||||||
|
|
||||||
df = pd.DataFrame(result.values(), columns=[
|
|
||||||
"kb_name",
|
|
||||||
"vs_type",
|
|
||||||
"embed_model",
|
|
||||||
"file_count",
|
|
||||||
"create_time",
|
|
||||||
"in_folder",
|
|
||||||
"in_db",
|
|
||||||
])
|
|
||||||
df.insert(0, "No", range(1, len(df) + 1))
|
|
||||||
return df
|
|
||||||
|
|
||||||
|
|
||||||
def get_kb_doc_details(api: ApiRequest, kb: str) -> pd.DataFrame:
|
|
||||||
docs_in_folder = list_docs_from_folder(kb)
|
|
||||||
docs_in_db = api.list_kb_docs(kb)
|
|
||||||
result = {}
|
|
||||||
|
|
||||||
for doc in docs_in_folder:
|
|
||||||
result[doc] = {
|
|
||||||
"kb_name": kb,
|
|
||||||
"file_name": doc,
|
|
||||||
"file_ext": os.path.splitext(doc)[-1],
|
|
||||||
"file_version": 0,
|
|
||||||
"document_loader": "",
|
|
||||||
"text_splitter": "",
|
|
||||||
"create_time": None,
|
|
||||||
"in_folder": True,
|
|
||||||
"in_db": False,
|
|
||||||
}
|
|
||||||
|
|
||||||
for doc in docs_in_db:
|
|
||||||
doc_detail = get_file_detail(kb, doc)
|
|
||||||
if doc_detail:
|
|
||||||
doc_detail["in_db"] = True
|
|
||||||
if doc in result:
|
|
||||||
result[doc].update(doc_detail)
|
|
||||||
else:
|
|
||||||
doc_detail["in_folder"] = False
|
|
||||||
result[doc] = doc_detail
|
|
||||||
|
|
||||||
df = pd.DataFrame(result.values(), columns=[
|
|
||||||
"kb_name",
|
|
||||||
"file_name",
|
|
||||||
"file_ext",
|
|
||||||
"file_version",
|
|
||||||
"document_loader",
|
|
||||||
"text_splitter",
|
|
||||||
"create_time",
|
|
||||||
"in_folder",
|
|
||||||
"in_db",
|
|
||||||
])
|
|
||||||
df.insert(0, "No", range(1, len(df) + 1))
|
|
||||||
return df
|
|
||||||
|
|
||||||
|
|
||||||
def config_aggrid(
|
def config_aggrid(
|
||||||
df: pd.DataFrame,
|
df: pd.DataFrame,
|
||||||
titles: Dict[str, str] = {},
|
columns: Dict[Tuple[str, str], Dict] = {},
|
||||||
selection_mode: Literal["single", "multiple", "disabled"] = "single",
|
selection_mode: Literal["single", "multiple", "disabled"] = "single",
|
||||||
use_checkbox: bool = False,
|
use_checkbox: bool = False,
|
||||||
) -> GridOptionsBuilder:
|
) -> GridOptionsBuilder:
|
||||||
gb = GridOptionsBuilder.from_dataframe(df)
|
gb = GridOptionsBuilder.from_dataframe(df)
|
||||||
gb.configure_column("No", width=50)
|
gb.configure_column("No", width=40)
|
||||||
for k, v in titles.items():
|
for (col, header), kw in columns.items():
|
||||||
gb.configure_column(k, v, maxWidth=100, wrapHeaderText=True)
|
gb.configure_column(col, header, wrapHeaderText=True, **kw)
|
||||||
gb.configure_selection(selection_mode, use_checkbox, pre_selected_rows=[0])
|
gb.configure_selection(
|
||||||
|
selection_mode,
|
||||||
|
use_checkbox,
|
||||||
|
# pre_selected_rows=st.session_state.get("selected_rows", [0]),
|
||||||
|
)
|
||||||
return gb
|
return gb
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -142,22 +61,24 @@ def knowledge_base_page(api: ApiRequest):
|
||||||
else:
|
else:
|
||||||
st.error(f"名为 {new_kb_name} 的知识库不存在!")
|
st.error(f"名为 {new_kb_name} 的知识库不存在!")
|
||||||
|
|
||||||
st.write("知识库:")
|
st.write("知识库列表:")
|
||||||
if kb_list:
|
if kb_list:
|
||||||
gb = config_aggrid(
|
gb = config_aggrid(
|
||||||
kb_details,
|
kb_details,
|
||||||
{
|
{
|
||||||
"kb_name": "知识库名称",
|
("kb_name", "知识库名称"): {"maxWidth": 150},
|
||||||
"vs_type": "知识库类型",
|
("vs_type", "知识库类型"): {"maxWidth": 100},
|
||||||
"embed_model": "嵌入模型",
|
("embed_model", "嵌入模型"): {"maxWidth": 100},
|
||||||
"file_count": "文档数量",
|
("file_count", "文档数量"): {"maxWidth": 60},
|
||||||
"create_time": "创建时间",
|
("create_time", "创建时间"): {"maxWidth": 150},
|
||||||
"in_folder": "存在于文件夹",
|
("in_folder", "文件夹"): {"maxWidth": 50},
|
||||||
"in_db": "存在于数据库",
|
("in_db", "数据库"): {"maxWidth": 50},
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
kb_grid = AgGrid(kb_details, gb.build())
|
kb_grid = AgGrid(kb_details, gb.build())
|
||||||
|
# st.write(kb_grid)
|
||||||
if kb_grid.selected_rows:
|
if kb_grid.selected_rows:
|
||||||
|
# st.session_state.selected_rows = [x["nIndex"] for x in kb_grid.selected_rows]
|
||||||
kb = kb_grid.selected_rows[0]["kb_name"]
|
kb = kb_grid.selected_rows[0]["kb_name"]
|
||||||
|
|
||||||
with st.sidebar:
|
with st.sidebar:
|
||||||
|
|
@ -191,21 +112,21 @@ def knowledge_base_page(api: ApiRequest):
|
||||||
progress.progress(d["finished"] / d["t]otal"], f"正在处理: {d['doc']}")
|
progress.progress(d["finished"] / d["t]otal"], f"正在处理: {d['doc']}")
|
||||||
|
|
||||||
# 知识库详情
|
# 知识库详情
|
||||||
st.subheader(f"知识库 {kb} 详情")
|
st.write(f"知识库 {kb} 详情:")
|
||||||
doc_details = get_kb_doc_details(api, kb)
|
doc_details = get_kb_doc_details(api, kb)
|
||||||
doc_details.drop(columns=["kb_name"], inplace=True)
|
doc_details.drop(columns=["kb_name"], inplace=True)
|
||||||
|
|
||||||
gb = config_aggrid(
|
gb = config_aggrid(
|
||||||
doc_details,
|
doc_details,
|
||||||
{
|
{
|
||||||
"file_name": "文档名称",
|
("file_name", "文档名称"): {"maxWidth": 150},
|
||||||
"file_ext": "文档类型",
|
("file_ext", "文档类型"): {"maxWidth": 50},
|
||||||
"file_version": "文档版本",
|
("file_version", "文档版本"): {"maxWidth": 50},
|
||||||
"document_loader": "文档加载器",
|
("document_loader", "文档加载器"): {"maxWidth": 150},
|
||||||
"text_splitter": "分词器",
|
("text_splitter", "分词器"): {"maxWidth": 150},
|
||||||
"create_time": "创建时间",
|
("create_time", "创建时间"): {"maxWidth": 150},
|
||||||
"in_folder": "存在于文件夹",
|
("in_folder", "文件夹"): {"maxWidth": 50},
|
||||||
"in_db": "存在于数据库",
|
("in_db", "数据库"): {"maxWidth": 50},
|
||||||
},
|
},
|
||||||
"multiple",
|
"multiple",
|
||||||
)
|
)
|
||||||
|
|
@ -239,5 +160,3 @@ def knowledge_base_page(api: ApiRequest):
|
||||||
ret = api.delete_kb_doc(kb, row["file_name"], True)
|
ret = api.delete_kb_doc(kb, row["file_name"], True)
|
||||||
st.toast(ret["msg"])
|
st.toast(ret["msg"])
|
||||||
st.experimental_rerun()
|
st.experimental_rerun()
|
||||||
|
|
||||||
st.write("本文档包含以下知识条目:(待定内容)")
|
|
||||||
|
|
|
||||||
|
|
@ -17,7 +17,10 @@ from fastapi.responses import StreamingResponse
|
||||||
import contextlib
|
import contextlib
|
||||||
import json
|
import json
|
||||||
from io import BytesIO
|
from io import BytesIO
|
||||||
from server.knowledge_base.utils import list_kbs_from_folder
|
import pandas as pd
|
||||||
|
from server.knowledge_base.utils import list_kbs_from_folder, list_docs_from_folder
|
||||||
|
from server.db.repository.knowledge_base_repository import get_kb_detail
|
||||||
|
from server.db.repository.knowledge_file_repository import get_file_detail
|
||||||
|
|
||||||
|
|
||||||
def set_httpx_timeout(timeout=60.0):
|
def set_httpx_timeout(timeout=60.0):
|
||||||
|
|
@ -529,11 +532,120 @@ class ApiRequest:
|
||||||
return self._httpx_stream2generator(response, as_json=True)
|
return self._httpx_stream2generator(response, as_json=True)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
def get_kb_details(api: ApiRequest) -> pd.DataFrame:
|
||||||
|
kbs_in_folder = list_kbs_from_folder()
|
||||||
|
kbs_in_db = api.list_knowledge_bases()
|
||||||
|
result = {}
|
||||||
|
|
||||||
|
for kb in kbs_in_folder:
|
||||||
|
result[kb] = {
|
||||||
|
"kb_name": kb,
|
||||||
|
"vs_type": "",
|
||||||
|
"embed_model": "",
|
||||||
|
"file_count": 0,
|
||||||
|
"create_time": None,
|
||||||
|
"in_folder": True,
|
||||||
|
"in_db": False,
|
||||||
|
}
|
||||||
|
|
||||||
|
for kb in kbs_in_db:
|
||||||
|
kb_detail = get_kb_detail(kb)
|
||||||
|
if kb_detail:
|
||||||
|
kb_detail["in_db"] = True
|
||||||
|
if kb in result:
|
||||||
|
result[kb].update(kb_detail)
|
||||||
|
else:
|
||||||
|
kb_detail["in_folder"] = False
|
||||||
|
result[kb] = kb_detail
|
||||||
|
|
||||||
|
df = pd.DataFrame(result.values(), columns=[
|
||||||
|
"kb_name",
|
||||||
|
"vs_type",
|
||||||
|
"embed_model",
|
||||||
|
"file_count",
|
||||||
|
"create_time",
|
||||||
|
"in_folder",
|
||||||
|
"in_db",
|
||||||
|
])
|
||||||
|
df.insert(0, "No", range(1, len(df) + 1))
|
||||||
|
return df
|
||||||
|
|
||||||
|
|
||||||
|
def get_kb_doc_details(api: ApiRequest, kb: str) -> pd.DataFrame:
|
||||||
|
docs_in_folder = list_docs_from_folder(kb)
|
||||||
|
docs_in_db = api.list_kb_docs(kb)
|
||||||
|
result = {}
|
||||||
|
|
||||||
|
for doc in docs_in_folder:
|
||||||
|
result[doc] = {
|
||||||
|
"kb_name": kb,
|
||||||
|
"file_name": doc,
|
||||||
|
"file_ext": os.path.splitext(doc)[-1],
|
||||||
|
"file_version": 0,
|
||||||
|
"document_loader": "",
|
||||||
|
"text_splitter": "",
|
||||||
|
"create_time": None,
|
||||||
|
"in_folder": True,
|
||||||
|
"in_db": False,
|
||||||
|
}
|
||||||
|
|
||||||
|
for doc in docs_in_db:
|
||||||
|
doc_detail = get_file_detail(kb, doc)
|
||||||
|
if doc_detail:
|
||||||
|
doc_detail["in_db"] = True
|
||||||
|
if doc in result:
|
||||||
|
result[doc].update(doc_detail)
|
||||||
|
else:
|
||||||
|
doc_detail["in_folder"] = False
|
||||||
|
result[doc] = doc_detail
|
||||||
|
|
||||||
|
df = pd.DataFrame(result.values(), columns=[
|
||||||
|
"kb_name",
|
||||||
|
"file_name",
|
||||||
|
"file_ext",
|
||||||
|
"file_version",
|
||||||
|
"document_loader",
|
||||||
|
"text_splitter",
|
||||||
|
"create_time",
|
||||||
|
"in_folder",
|
||||||
|
"in_db",
|
||||||
|
])
|
||||||
|
df.insert(0, "No", range(1, len(df) + 1))
|
||||||
|
return df
|
||||||
|
|
||||||
|
|
||||||
|
def init_vs_database(recreate_vs: bool = False):
|
||||||
|
'''
|
||||||
|
init local vector store info to database
|
||||||
|
'''
|
||||||
from server.db.base import Base, engine
|
from server.db.base import Base, engine
|
||||||
|
from server.db.repository.knowledge_base_repository import add_kb_to_db, kb_exists
|
||||||
|
from server.db.repository.knowledge_file_repository import add_doc_to_db
|
||||||
|
from server.knowledge_base.utils import KnowledgeFile
|
||||||
|
|
||||||
Base.metadata.create_all(bind=engine)
|
Base.metadata.create_all(bind=engine)
|
||||||
|
|
||||||
|
if recreate_vs:
|
||||||
|
api = ApiRequest(no_remote_api=True)
|
||||||
|
for kb in list_kbs_from_folder():
|
||||||
|
for t in api.recreate_vector_store(kb):
|
||||||
|
print(t)
|
||||||
|
else: # add vs info to db only
|
||||||
|
for kb in list_kbs_from_folder():
|
||||||
|
if not kb_exists(kb):
|
||||||
|
add_kb_to_db(kb, "faiss", EMBEDDING_MODEL)
|
||||||
|
for doc in list_docs_from_folder(kb):
|
||||||
|
try:
|
||||||
|
kb_file = KnowledgeFile(doc, kb)
|
||||||
|
add_doc_to_db(kb_file)
|
||||||
|
except Exception as e:
|
||||||
|
print(e)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
api = ApiRequest(no_remote_api=True)
|
api = ApiRequest(no_remote_api=True)
|
||||||
|
# init vector store database
|
||||||
|
init_vs_database()
|
||||||
|
|
||||||
# print(api.chat_fastchat(
|
# print(api.chat_fastchat(
|
||||||
# messages=[{"role": "user", "content": "hello"}]
|
# messages=[{"role": "user", "content": "hello"}]
|
||||||
|
|
@ -552,8 +664,3 @@ if __name__ == "__main__":
|
||||||
# print(t)
|
# print(t)
|
||||||
|
|
||||||
# print(api.list_knowledge_bases())
|
# print(api.list_knowledge_bases())
|
||||||
|
|
||||||
# recreate all vector store
|
|
||||||
for kb in list_kbs_from_folder():
|
|
||||||
for t in api.recreate_vector_store(kb):
|
|
||||||
print(t)
|
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue