Merge branch 'dev_fastchat' of github.com:chatchat-space/langchain-ChatGLM into dev_fastchat

This commit is contained in:
hzg0601 2023-08-03 14:39:14 +08:00
commit fdbff8a91f
4 changed files with 331 additions and 37 deletions

View File

@ -13,7 +13,6 @@ openai_api_port = 8888
base_url = "http://127.0.0.1:{}"
queue = Queue()
sys.modules['fastchat.constants.LOGDIR'] = LOG_PATH
import parser
def set_httpx_timeout(timeout=60.0):

View File

@ -1,3 +1,9 @@
# 运行方式:
# 1. 安装必要的包pip install streamlit-option-menu streamlit-chatbox>=1.1.3
# 2. 运行本机fastchat服务python server\llm_api.py 或者 运行对应的sh文件
# 3. 运行API服务器python server/api.py。如果使用api = ApiRequest(no_remote_api=True),该步可以跳过。
# 4. 运行WEB UIstreamlit run webui.py --server.port 7860
import streamlit as st
from webui_pages.utils import *
from streamlit_option_menu import option_menu

View File

@ -2,37 +2,85 @@ import streamlit as st
from webui_pages.utils import *
from streamlit_chatbox import *
chat_box = ChatBox()
def dialogue_page(api: ApiRequest):
chat_box = ChatBox(
greetings=[
f"欢迎使用 [`Langchain-Chatglm`](https://github.com/chatchat-space/langchain-chatglm) ! 当前使用模型`{LLM_MODEL}`, 您可以开始提问了.",
]
)
with st.sidebar:
def on_mode_change():
mode = st.session_state.dialogue_mode
text = f"已切换到 {mode} 模式。"
if mode == "知识库问答":
cur_kb = st.session_state.get("selected_kb")
if cur_kb:
text = f"{text} 当前知识库: `{cur_kb}`。"
chat_box.ai_say(text, not_render=True)
dialogue_mode = st.radio("请选择对话模式",
["LLM 对话",
"知识库问答",
"Bing 搜索问答"])
history_len = st.slider("历史对话轮数:", 1, 10, 1)
"Bing 搜索问答",
"Duck 搜索问答",
],
on_change=on_mode_change,
key="dialogue_mode",
)
history_len = st.slider("历史对话轮数:", 1, 10, 1, disabled=True)
# todo: support history len
if st.button("清除历史对话"):
chat_box.reset_history()
def on_kb_change():
chat_box.ai_say(f"已加载知识库: {st.session_state.selected_kb}", not_render=True)
if dialogue_mode == "知识库问答":
selected_kb = st.selectbox("请选择知识库:", get_kb_list())
with st.expander(f"{selected_kb} 中已存储文件"):
st.write(get_kb_files(selected_kb))
kb_list = api.list_knowledge_bases()
selected_kb = st.selectbox(
"请选择知识库:",
kb_list,
on_change=on_kb_change,
key="selected_kb",
)
top_k = st.slider("匹配知识条数:", 1, 20, 3, disabled=True)
score_threshold = st.slider("知识匹配分数阈值:", 0, 1000, 0, disabled=True)
chunk_content = st.checkbox("关联上下文", False, disabled=True)
chunk_size = st.slider("关联长度:", 0, 500, 250, disabled=True)
# Display chat messages from history on app rerun
chat_box.output_messages()
if prompt := st.chat_input("请输入对话内容换行请使用Ctrl+Enter"):
chat_box.user_say(prompt)
if dialogue_mode == "LLM 对话":
chat_box.ai_say("正在思考...")
# with api.chat_fastchat([{"role": "user", "content": "prompt"}], stream=streaming) as r:
# todo: support history len
text = ""
r = api.chat_chat(prompt, no_remote_api=True)
for t in r:
text += t
chat_box.update_msg(text)
chat_box.update_msg(text, streaming=False) # 更新最终的字符串,去除光标
elif dialogue_mode == "知识库问答":
chat_box.ai_say(f"正在查询知识库: `{selected_kb}` ...")
text = ""
for t in api.knowledge_base_chat(prompt, selected_kb):
text += t
chat_box.update_msg(text)
chat_box.update_msg(text, streaming=False)
elif dialogue_mode == "Bing 搜索问答":
chat_box.ai_say("正在执行Bing搜索...")
text = ""
for t in api.bing_search_chat(prompt):
text += t
chat_box.update_msg(text)
chat_box.update_msg(text, streaming=False)
elif dialogue_mode == "Duck 搜索问答":
chat_box.ai_say("正在执行Duckduck搜索...")
text = ""
for t in api.duckduckgo_search_chat(prompt):
text += t
chat_box.update_msg(text)
chat_box.update_msg(text, streaming=False)
# with api.chat_chat(prompt) as r:
# for t in r.iter_text(None):
# text += t
# chat_box.update_msg(text)
# chat_box.update_msg(text, streaming=False)

View File

@ -1,5 +1,6 @@
# 该文件包含webui通用工具可以被不同的webui使用
import tempfile
from typing import *
from pathlib import Path
import os
@ -12,6 +13,7 @@ import httpx
import asyncio
from server.chat.openai_chat import OpenAiChatMsgIn
from fastapi.responses import StreamingResponse
import contextlib
def set_httpx_timeout(timeout=60.0):
@ -87,9 +89,11 @@ class ApiRequest:
self,
base_url: str = "http://127.0.0.1:7861",
timeout: float = 60.0,
no_remote_api: bool = False, # call api view function directly
):
self.base_url = base_url
self.timeout = timeout
self.no_remote_api = no_remote_api
def _parse_url(self, url: str) -> str:
if (not url.startswith("http")
@ -112,7 +116,7 @@ class ApiRequest:
kwargs.setdefault("timeout", self.timeout)
while retry > 0:
try:
return httpx.get(url, params, **kwargs)
return httpx.get(url, params=params, **kwargs)
except:
retry -= 1
@ -128,7 +132,7 @@ class ApiRequest:
async with httpx.AsyncClient() as client:
while retry > 0:
try:
return await client.get(url, params, **kwargs)
return await client.get(url, params=params, **kwargs)
except:
retry -= 1
@ -170,7 +174,7 @@ class ApiRequest:
except:
retry -= 1
def _stream2generator(self, response: StreamingResponse):
def _fastapi_stream2generator(self, response: StreamingResponse):
'''
将api.py中视图函数返回的StreamingResponse转化为同步生成器
'''
@ -180,6 +184,16 @@ class ApiRequest:
loop = asyncio.new_event_loop()
return iter_over_async(response.body_iterator, loop)
def _httpx_stream2generator(self,response: contextlib._GeneratorContextManager):
'''
将httpx.stream返回的GeneratorContextManager转化为普通生成器
'''
with response as r:
for chunk in r.iter_text(None):
yield chunk
# 对话相关操作
def chat_fastchat(
self,
messages: List[Dict],
@ -187,12 +201,14 @@ class ApiRequest:
model: str = LLM_MODEL,
temperature: float = 0.7,
max_tokens: int = 1024, # todo:根据message内容自动计算max_tokens
no_remote_api=False, # all api view function directly
no_remote_api: bool = None,
**kwargs: Any,
):
'''
对应api.py/chat/fastchat接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
msg = OpenAiChatMsgIn(**{
"messages": messages,
"stream": stream,
@ -205,7 +221,7 @@ class ApiRequest:
if no_remote_api:
from server.chat.openai_chat import openai_chat
response = openai_chat(msg)
return self._stream2generator(response)
return self._fastapi_stream2generator(response)
else:
data = msg.dict(exclude_unset=True, exclude_none=True)
response = self.post(
@ -213,35 +229,260 @@ class ApiRequest:
json=data,
stream=stream,
)
return response
return self._httpx_stream2generator(response)
def chat_chat(
self,
query: str,
no_remote_api: bool = False,
no_remote_api: bool = None,
):
'''
对应api.py/chat/chat接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
if no_remote_api:
from server.chat.chat import chat
response = chat(query)
return self._stream2generator(response)
return self._fastapi_stream2generator(response)
else:
response = self.post("/chat/chat", json=f"{query}", stream=True)
return response
return self._httpx_stream2generator(response)
def knowledge_base_chat(
self,
query: str,
knowledge_base_name: str,
no_remote_api: bool = None,
):
'''
对应api.py/chat/knowledge_base_chat接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
if no_remote_api:
from server.chat.knowledge_base_chat import knowledge_base_chat
response = knowledge_base_chat(query, knowledge_base_name)
return self._fastapi_stream2generator(response)
else:
response = self.post(
"/chat/knowledge_base_chat",
json={"query": query, "knowledge_base_name": knowledge_base_name},
stream=True,
)
return self._httpx_stream2generator(response)
def duckduckgo_search_chat(
self,
query: str,
no_remote_api: bool = None,
):
'''
对应api.py/chat/duckduckgo_search_chat接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
if no_remote_api:
from server.chat.duckduckgo_search_chat import duckduckgo_search_chat
response = duckduckgo_search_chat(query)
return self._fastapi_stream2generator(response)
else:
response = self.post(
"/chat/duckduckgo_search_chat",
json=f"{query}",
stream=True,
)
return self._httpx_stream2generator(response)
def bing_search_chat(
self,
query: str,
no_remote_api: bool = None,
):
'''
对应api.py/chat/bing_search_chat接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
if no_remote_api:
from server.chat.bing_search_chat import bing_search_chat
response = bing_search_chat(query)
return self._fastapi_stream2generator(response)
else:
response = self.post(
"/chat/bing_search_chat",
json=f"{query}",
stream=True,
)
return self._httpx_stream2generator(response)
# 知识库相关操作
def list_knowledge_bases(
self,
no_remote_api: bool = None,
):
'''
对应api.py/knowledge_base/list_knowledge_bases接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
if no_remote_api:
from server.knowledge_base.kb_api import list_kbs
response = run_async(list_kbs())
return response.data
else:
response = self.get("/knowledge_base/list_knowledge_bases")
return response.json().get("data")
def create_knowledge_base(
self,
knowledge_base_name: str,
no_remote_api: bool = None,
):
'''
对应api.py/knowledge_base/create_knowledge_base接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
if no_remote_api:
from server.knowledge_base.kb_api import create_kb
response = run_async(create_kb(knowledge_base_name))
return response.dict()
else:
response = self.post(
"/knowledge_base/create_knowledge_base",
json={"knowledge_base_name": knowledge_base_name},
)
return response.json()
def delete_knowledge_base(
self,
knowledge_base_name: str,
no_remote_api: bool = None,
):
'''
对应api.py/knowledge_base/delete_knowledge_base接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
if no_remote_api:
from server.knowledge_base.kb_api import delete_kb
response = run_async(delete_kb(knowledge_base_name))
return response.dict()
else:
response = self.delete(
"/knowledge_base/delete_knowledge_base",
json={"knowledge_base_name": knowledge_base_name},
)
return response.json()
def list_kb_docs(
self,
knowledge_base_name: str,
no_remote_api: bool = None,
):
'''
对应api.py/knowledge_base/list_docs接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
if no_remote_api:
from server.knowledge_base.kb_doc_api import list_docs
response = run_async(list_docs(knowledge_base_name))
return response.data
else:
response = self.get(
"/knowledge_base/list_docs",
params={"knowledge_base_name": knowledge_base_name}
)
return response.json().get("data")
def upload_kb_doc(
self,
file: Union[str, Path],
knowledge_base_name: str,
no_remote_api: bool = None,
):
'''
对应api.py/knowledge_base/upload_docs接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
file = Path(file).absolute()
filename = file.name
if no_remote_api:
from server.knowledge_base.kb_doc_api import upload_doc
from fastapi import UploadFile
from tempfile import SpooledTemporaryFile
temp_file = SpooledTemporaryFile(max_size=10 * 1024 * 1024)
with file.open("rb") as fp:
temp_file.write(fp.read())
response = run_async(upload_doc(
UploadFile(temp_file, filename=filename),
knowledge_base_name,
))
return response.dict()
else:
response = self.post(
"/knowledge_base/upload_doc",
data={"knowledge_base_name": knowledge_base_name},
files={"file": (filename, file.open("rb"))},
)
return response.json()
def delete_kb_doc(
self,
knowledge_base_name: str,
doc_name: str,
no_remote_api: bool = None,
):
'''
对应api.py/knowledge_base/delete_doc接口
'''
if no_remote_api is None:
no_remote_api = self.no_remote_api
if no_remote_api:
from server.knowledge_base.kb_doc_api import delete_doc
response = run_async(delete_doc(knowledge_base_name, doc_name))
return response.dict()
else:
response = self.delete(
"/knowledge_base/delete_doc",
json={"knowledge_base_name": knowledge_base_name, "doc_name": doc_name},
)
return response.json()
if __name__ == "__main__":
api = ApiRequest()
# print(api.chat_fastchat(
# messages=[{"role": "user", "content": "hello"}]
# ))
with api.chat_chat("你好") as r:
for t in r.iter_text(None):
print(t)
# with api.chat_chat("你好") as r:
# for t in r.iter_text(None):
# print(t)
r = api.chat_chat("你好", no_remote_api=True)
for t in r:
print(t)
# r = api.chat_chat("你好", no_remote_api=True)
# for t in r:
# print(t)
# r = api.duckduckgo_search_chat("室温超导最新研究进展", no_remote_api=True)
# for t in r:
# print(t)
print(api.list_knowledge_bases())