Add support for folder path as input
This commit is contained in:
parent
4ec339777c
commit
ffbf239e1b
|
|
@ -11,12 +11,13 @@ from chatglm_llm import ChatGLM
|
|||
import sentence_transformers
|
||||
import torch
|
||||
import os
|
||||
import readline
|
||||
|
||||
|
||||
# Global Parameters
|
||||
EMBEDDING_MODEL = "local"#"text2vec"
|
||||
EMBEDDING_MODEL = "text2vec"
|
||||
VECTOR_SEARCH_TOP_K = 6
|
||||
LLM_MODEL = "local"#"chatglm-6b"
|
||||
LLM_MODEL = "chatglm-6b"
|
||||
LLM_HISTORY_LEN = 3
|
||||
DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||||
|
||||
|
|
@ -27,14 +28,12 @@ embedding_model_dict = {
|
|||
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
|
||||
"ernie-base": "nghuyong/ernie-3.0-base-zh",
|
||||
"text2vec": "GanymedeNil/text2vec-large-chinese",
|
||||
"local": "/Users/liuqian/Downloads/ChatGLM-6B/text2vec-large-chinese"
|
||||
}
|
||||
|
||||
llm_model_dict = {
|
||||
"chatglm-6b-int4-qe": "THUDM/chatglm-6b-int4-qe",
|
||||
"chatglm-6b-int4": "THUDM/chatglm-6b-int4",
|
||||
"chatglm-6b": "THUDM/chatglm-6b",
|
||||
"local": "/Users/liuqian/Downloads/ChatGLM-6B/chatglm-6b"
|
||||
}
|
||||
|
||||
|
||||
|
|
@ -52,7 +51,10 @@ def init_cfg(LLM_MODEL, EMBEDDING_MODEL, LLM_HISTORY_LEN, V_SEARCH_TOP_K=6):
|
|||
|
||||
|
||||
def init_knowledge_vector_store(filepath:str):
|
||||
if os.path.isfile(filepath):
|
||||
if not os.path.exists(filepath):
|
||||
print("路径不存在")
|
||||
return None
|
||||
elif os.path.isfile(filepath):
|
||||
loader = UnstructuredFileLoader(filepath, mode="elements")
|
||||
docs = loader.load()
|
||||
print(f"{os.path.split(filepath)[-1]} 已成功加载")
|
||||
|
|
@ -66,6 +68,7 @@ def init_knowledge_vector_store(filepath:str):
|
|||
print(f"{file} 已成功加载")
|
||||
except:
|
||||
print(f"{file} 未能成功加载")
|
||||
|
||||
vector_store = FAISS.from_documents(docs, embeddings)
|
||||
return vector_store
|
||||
|
||||
|
|
@ -100,8 +103,11 @@ def get_knowledge_based_answer(query, vector_store, chat_history=[]):
|
|||
|
||||
if __name__ == "__main__":
|
||||
init_cfg(LLM_MODEL, EMBEDDING_MODEL, LLM_HISTORY_LEN)
|
||||
filepath = input("Input your local knowledge file path 请输入本地知识文件路径:")
|
||||
vector_store = init_knowledge_vector_store(filepath)
|
||||
vector_store = None
|
||||
while not vector_store:
|
||||
filepath = input("Input your local knowledge file path 请输入本地知识文件路径:")
|
||||
print(filepath)
|
||||
vector_store = init_knowledge_vector_store(filepath)
|
||||
history = []
|
||||
while True:
|
||||
query = input("Input your question 请输入问题:")
|
||||
|
|
|
|||
Loading…
Reference in New Issue