from configs.model_config import EMBEDDING_MODEL, DEFAULT_VS_TYPE from server.knowledge_base.utils import (get_file_path, list_kbs_from_folder, list_files_from_folder, run_in_thread_pool, files2docs_in_thread, KnowledgeFile,) from server.knowledge_base.kb_service.base import KBServiceFactory, SupportedVSType from server.db.repository.knowledge_file_repository import add_file_to_db from server.db.base import Base, engine import os from concurrent.futures import ThreadPoolExecutor from typing import Literal, Any, List pool = ThreadPoolExecutor(os.cpu_count()) def create_tables(): Base.metadata.create_all(bind=engine) def reset_tables(): Base.metadata.drop_all(bind=engine) create_tables() def file_to_kbfile(kb_name: str, files: List[str]) -> List[KnowledgeFile]: kb_files = [] for file in files: try: kb_file = KnowledgeFile(filename=file, knowledge_base_name=kb_name) kb_files.append(kb_file) except Exception as e: print(f"{e},已跳过") return kb_files def folder2db( kb_name: str, mode: Literal["recreate_vs", "fill_info_only", "update_in_db", "increament"], vs_type: Literal["faiss", "milvus", "pg", "chromadb"] = DEFAULT_VS_TYPE, embed_model: str = EMBEDDING_MODEL, ): ''' use existed files in local folder to populate database and/or vector store. set parameter `mode` to: recreate_vs: recreate all vector store and fill info to database using existed files in local folder fill_info_only: do not create vector store, fill info to db using existed files only update_in_db: update vector store and database info using local files that existed in database only increament: create vector store and database info for local files that not existed in database only ''' kb = KBServiceFactory.get_service(kb_name, vs_type, embed_model) kb.create_kb() if mode == "recreate_vs": files_count = kb.count_files() print(f"知识库 {kb_name} 中共有 {files_count} 个文档。\n即将清除向量库。") kb.clear_vs() files_count = kb.count_files() print(f"清理后,知识库 {kb_name} 中共有 {files_count} 个文档。") kb_files = file_to_kbfile(kb_name, list_files_from_folder(kb_name)) for success, result in files2docs_in_thread(kb_files, pool=pool): if success: _, filename, docs = result print(f"正在将 {kb_name}/{filename} 添加到向量库,共包含{len(docs)}条文档") kb_file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name) kb.add_doc(kb_file=kb_file, docs=docs, not_refresh_vs_cache=True) else: print(result) if kb.vs_type() == SupportedVSType.FAISS: kb.save_vector_store() kb.refresh_vs_cache() elif mode == "fill_info_only": files = list_files_from_folder(kb_name) kb_files = file_to_kbfile(kb_name, files) for kb_file in kb_files: add_file_to_db(kb_file) print(f"已将 {kb_name}/{kb_file.filename} 添加到数据库") elif mode == "update_in_db": files = kb.list_files() kb_files = file_to_kbfile(kb_name, files) for kb_file in kb_files: kb.update_doc(kb_file, not_refresh_vs_cache=True) if kb.vs_type() == SupportedVSType.FAISS: kb.save_vector_store() kb.refresh_vs_cache() elif mode == "increament": db_files = kb.list_files() folder_files = list_files_from_folder(kb_name) files = list(set(folder_files) - set(db_files)) kb_files = file_to_kbfile(kb_name, files) for success, result in files2docs_in_thread(kb_files, pool=pool): if success: _, filename, docs = result print(f"正在将 {kb_name}/{filename} 添加到向量库") kb_file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name) kb.add_doc(kb_file=kb_file, docs=docs, not_refresh_vs_cache=True) else: print(result) if kb.vs_type() == SupportedVSType.FAISS: kb.save_vector_store() kb.refresh_vs_cache() else: print(f"unspported migrate mode: {mode}") def recreate_all_vs( vs_type: Literal["faiss", "milvus", "pg", "chromadb"] = DEFAULT_VS_TYPE, embed_mode: str = EMBEDDING_MODEL, **kwargs: Any, ): ''' used to recreate a vector store or change current vector store to another type or embed_model ''' for kb_name in list_kbs_from_folder(): folder2db(kb_name, "recreate_vs", vs_type, embed_mode, **kwargs) def prune_db_files(kb_name: str): ''' delete files in database that not existed in local folder. it is used to delete database files after user deleted some doc files in file browser ''' kb = KBServiceFactory.get_service_by_name(kb_name) if kb.exists(): files_in_db = kb.list_files() files_in_folder = list_files_from_folder(kb_name) files = list(set(files_in_db) - set(files_in_folder)) kb_files = file_to_kbfile(kb_name, files) for kb_file in kb_files: kb.delete_doc(kb_file, not_refresh_vs_cache=True) if kb.vs_type() == SupportedVSType.FAISS: kb.save_vector_store() kb.refresh_vs_cache() return kb_files def prune_folder_files(kb_name: str): ''' delete doc files in local folder that not existed in database. is is used to free local disk space by delete unused doc files. ''' kb = KBServiceFactory.get_service_by_name(kb_name) if kb.exists(): files_in_db = kb.list_files() files_in_folder = list_files_from_folder(kb_name) files = list(set(files_in_folder) - set(files_in_db)) for file in files: os.remove(get_file_path(kb_name, file)) return files