import os import shutil from configs.model_config import KB_ROOT_PATH, CACHED_VS_NUM, EMBEDDING_MODEL, EMBEDDING_DEVICE from server.knowledge_base.kb_service.base import KBService, SupportedVSType from functools import lru_cache from server.knowledge_base.utils import get_vs_path, load_embeddings, KnowledgeFile from langchain.vectorstores import FAISS from langchain.embeddings.base import Embeddings from langchain.embeddings.huggingface import HuggingFaceEmbeddings from typing import List from langchain.docstore.document import Document from server.utils import torch_gc import numpy as np # make HuggingFaceEmbeddings hashable def _embeddings_hash(self): return hash(self.model_name) HuggingFaceEmbeddings.__hash__ = _embeddings_hash _VECTOR_STORE_TICKS = {} @lru_cache(CACHED_VS_NUM) def load_vector_store( knowledge_base_name: str, embed_model: str = EMBEDDING_MODEL, embed_device: str = EMBEDDING_DEVICE, embeddings: Embeddings = None, tick: int = 0, # tick will be changed by upload_doc etc. and make cache refreshed. ): print(f"loading vector store in '{knowledge_base_name}'.") vs_path = get_vs_path(knowledge_base_name) if embeddings is None: embeddings = load_embeddings(embed_model, embed_device) search_index = FAISS.load_local(vs_path, embeddings) return search_index def refresh_vs_cache(kb_name: str): """ make vector store cache refreshed when next loading """ _VECTOR_STORE_TICKS[kb_name] = _VECTOR_STORE_TICKS.get(kb_name, 0) + 1 class FaissKBService(KBService): vs_path: str kb_path: str def vs_type(self) -> str: return SupportedVSType.FAISS @staticmethod def get_vs_path(knowledge_base_name: str): return os.path.join(FaissKBService.get_kb_path(knowledge_base_name), "vector_store") @staticmethod def get_kb_path(knowledge_base_name: str): return os.path.join(KB_ROOT_PATH, knowledge_base_name) def do_init(self): self.kb_path = FaissKBService.get_kb_path(self.kb_name) self.vs_path = FaissKBService.get_vs_path(self.kb_name) def do_create_kb(self): if not os.path.exists(self.vs_path): os.makedirs(self.vs_path) def do_drop_kb(self): shutil.rmtree(self.kb_path) def do_search(self, query: str, top_k: int, embeddings: Embeddings, ) -> List[Document]: search_index = load_vector_store(self.kb_name, embeddings=embeddings, tick=_VECTOR_STORE_TICKS.get(self.kb_name)) docs = search_index.similarity_search(query, k=top_k) return docs def do_add_doc(self, docs: List[Document], embeddings: Embeddings, ): if os.path.exists(self.vs_path) and "index.faiss" in os.listdir(self.vs_path): vector_store = FAISS.load_local(self.vs_path, embeddings) vector_store.add_documents(docs) torch_gc() else: if not os.path.exists(self.vs_path): os.makedirs(self.vs_path) vector_store = FAISS.from_documents( docs, embeddings) # docs 为Document列表 torch_gc() vector_store.save_local(self.vs_path) refresh_vs_cache(self.kb_name) def do_delete_doc(self, kb_file: KnowledgeFile): embeddings = self._load_embeddings() if os.path.exists(self.vs_path) and "index.faiss" in os.listdir(self.vs_path): vector_store = FAISS.load_local(self.vs_path, embeddings) ids = [k for k, v in vector_store.docstore._dict.items() if v.metadata["source"] == kb_file.filepath] if len(ids) == 0: return None vector_store.delete(ids) vector_store.save_local(self.vs_path) refresh_vs_cache(self.kb_name) return True else: return None def do_clear_vs(self): shutil.rmtree(self.vs_path) os.makedirs(self.vs_path) def exist_doc(self, file_name: str): if super().exist_doc(file_name): return "in_db" content_path = os.path.join(self.kb_path, "content") if os.path.isfile(os.path.join(content_path, file_name)): return "in_folder" else: return False