import json from langchain.llms.base import LLM from typing import Optional, List from langchain.llms.utils import enforce_stop_tokens from transformers import AutoTokenizer, AutoModel, AutoConfig import torch from configs.model_config import LLM_DEVICE DEVICE = LLM_DEVICE DEVICE_ID = "0" if torch.cuda.is_available() else None CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE def torch_gc(): if torch.cuda.is_available(): with torch.cuda.device(CUDA_DEVICE): torch.cuda.empty_cache() torch.cuda.ipc_collect() class ChatGLM(LLM): max_token: int = 10000 temperature: float = 0.01 top_p = 0.9 history = [] tokenizer: object = None model: object = None history_len: int = 10 def __init__(self): super().__init__() @property def _llm_type(self) -> str: return "ChatGLM" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: response, _ = self.model.chat( self.tokenizer, prompt, history=self.history[-self.history_len:] if self.history_len>0 else [], max_length=self.max_token, temperature=self.temperature, ) torch_gc() if stop is not None: response = enforce_stop_tokens(response, stop) self.history = self.history+[[None, response]] return response def load_model(self, model_name_or_path: str = "THUDM/chatglm-6b", llm_device=LLM_DEVICE, use_ptuning_v2=False): self.tokenizer = AutoTokenizer.from_pretrained( model_name_or_path, trust_remote_code=True ) model_config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) if use_ptuning_v2: try: prefix_encoder_file = open('ptuning-v2/config.json', 'r') prefix_encoder_config = json.loads(prefix_encoder_file.read()) prefix_encoder_file.close() model_config.pre_seq_len = prefix_encoder_config['pre_seq_len'] model_config.prefix_projection = prefix_encoder_config['prefix_projection'] except Exception: print("加载PrefixEncoder config.json失败") if torch.cuda.is_available() and llm_device.lower().startswith("cuda"): self.model = ( AutoModel.from_pretrained( model_name_or_path, config=model_config, trust_remote_code=True) .half() .cuda() ) else: self.model = ( AutoModel.from_pretrained( model_name_or_path, config=model_config, trust_remote_code=True) .float() .to(llm_device) ) if use_ptuning_v2: try: prefix_state_dict = torch.load('ptuning-v2/pytorch_model.bin') new_prefix_state_dict = {} for k, v in prefix_state_dict.items(): if k.startswith("transformer.prefix_encoder."): new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v self.model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict) self.model.transformer.prefix_encoder.float() except Exception: print("加载PrefixEncoder模型参数失败") self.model = self.model.eval()