import gradio as gr import os import shutil from chains.local_doc_qa import LocalDocQA from configs.model_config import * import nltk nltk.data.path = [os.path.join(os.path.dirname(__file__), "nltk_data")] + nltk.data.path # return top-k text chunk from vector store VECTOR_SEARCH_TOP_K = 6 # LLM input history length LLM_HISTORY_LEN = 3 def get_file_list(): if not os.path.exists("content"): return [] return [f for f in os.listdir("content")] def get_vs_list(): if not os.path.exists("vector_store"): return [] return ["新建知识库"] + os.listdir("vector_store") file_list = get_file_list() vs_list = get_vs_list() embedding_model_dict_list = list(embedding_model_dict.keys()) llm_model_dict_list = list(llm_model_dict.keys()) local_doc_qa = LocalDocQA() def upload_file(file, chatbot): if not os.path.exists("content"): os.mkdir("content") filename = os.path.basename(file.name) shutil.move(file.name, "content/" + filename) # file_list首位插入新上传的文件 file_list.insert(0, filename) status = "已将xx上传至xxx" return chatbot + [None, status] def get_answer(query, vs_path, history): if vs_path: resp, history = local_doc_qa.get_knowledge_based_answer( query=query, vs_path=vs_path, chat_history=history) source = "".join([f"""
出处 {i + 1} {doc.page_content} 所属文件:{doc.metadata["source"]}
""" for i, doc in enumerate(resp["source_documents"])]) history[-1][-1] += source else: resp = local_doc_qa.llm._call(query) history = history + [[None, resp + "\n如需基于知识库进行问答,请先加载知识库后,再进行提问。"]] return history, "" def update_status(history, status): history = history + [[None, status]] print(status) return history def init_model(): try: local_doc_qa.init_cfg() local_doc_qa.llm._call("你好") return """模型已成功加载,请选择文件后点击"加载文件"按钮""" except Exception as e: print(e) return """模型未成功加载,请重新选择后点击"加载模型"按钮""" def reinit_model(llm_model, embedding_model, llm_history_len, use_ptuning_v2, top_k, history): try: local_doc_qa.init_cfg(llm_model=llm_model, embedding_model=embedding_model, llm_history_len=llm_history_len, use_ptuning_v2=use_ptuning_v2, top_k=top_k) model_status = """模型已成功重新加载,请选择文件后点击"加载文件"按钮""" except Exception as e: print(e) model_status = """模型未成功重新加载,请重新选择后点击"加载模型"按钮""" return history + [[None, model_status]] def get_vector_store(filepath, history): if local_doc_qa.llm and local_doc_qa.embeddings: vs_path = local_doc_qa.init_knowledge_vector_store(["content/" + filepath]) if vs_path: file_status = "文件已成功加载,请开始提问" else: file_status = "文件未成功加载,请重新上传文件" else: file_status = "模型未完成加载,请先在加载模型后再导入文件" vs_path = None return vs_path, history + [[None, file_status]] def change_vs_name_input(vs): if vs == "新建知识库": return gr.update(lines=1, visible=True) else: return gr.update(visible=False) block_css = """.importantButton { background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important; border: none !important; } .importantButton:hover { background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important; border: none !important; }""" webui_title = """ # 🎉langchain-ChatGLM WebUI🎉 👍 [https://github.com/imClumsyPanda/langchain-ChatGLM](https://github.com/imClumsyPanda/langchain-ChatGLM) """ init_message = """欢迎使用 langchain-ChatGLM Web UI,开始提问前,请依次如下 3 个步骤: 1. 选择语言模型、Embedding 模型及相关参数,如果使用 ptuning-v2 方式微调过模型,将 PrefixEncoder 模型放在 ptuning-v2 文件夹里并勾选相关选项,然后点击"重新加载模型",并等待加载完成提示 2. 上传或选择已有文件作为本地知识文档输入后点击"重新加载文档",并等待加载完成提示 3. 输入要提交的问题后,点击回车提交 """ model_status = init_model() with gr.Blocks(css=block_css) as demo: vs_path, file_status, model_status = gr.State(""), gr.State(""), gr.State(model_status) gr.Markdown(webui_title) with gr.Tab("聊天"): with gr.Row(): with gr.Column(scale=2): chatbot = gr.Chatbot([[None, init_message], [None, model_status.value]], elem_id="chat-box", show_label=False).style(height=750) query = gr.Textbox(show_label=False, placeholder="请输入提问内容,按回车进行提交", ).style(container=False) with gr.Column(scale=1): gr.Markdown("请选择使用模式") gr.Radio(["默认", "知识库问答"], label="请选择使用模式", info="默认模式将不使用知识库") with gr.Accordion("配置知识库"): # gr.Markdown("配置知识库") select_vs = gr.Dropdown(vs_list, label="请选择要加载的知识库", interactive=True, value=vs_list[0] if len(vs_list) > 0 else None) vs_name = gr.Textbox(label="请输入新建知识库名称", lines=1, interactive=True) select_vs.change(fn=change_vs_name_input, inputs=select_vs, outputs=vs_name) gr.Markdown("向知识库中添加文件") with gr.Tab("上传文件"): files = gr.File(label="添加文件", file_types=['.txt', '.md', '.docx', '.pdf'], file_count="multiple", show_label=False ) load_file_button = gr.Button("上传文件") with gr.Tab("上传文件夹"): folder_files = gr.File(label="添加文件", file_types=['.txt', '.md', '.docx', '.pdf'], file_count="directory", show_label=False ) load_folder_button = gr.Button("上传文件夹") with gr.Tab("模型配置"): llm_model = gr.Radio(llm_model_dict_list, label="LLM 模型", value=LLM_MODEL, interactive=True) llm_history_len = gr.Slider(0, 10, value=LLM_HISTORY_LEN, step=1, label="LLM history len", interactive=True) use_ptuning_v2 = gr.Checkbox(USE_PTUNING_V2, label="使用p-tuning-v2微调过的模型", interactive=True) embedding_model = gr.Radio(embedding_model_dict_list, label="Embedding 模型", value=EMBEDDING_MODEL, interactive=True) top_k = gr.Slider(1, 20, value=VECTOR_SEARCH_TOP_K, step=1, label="向量匹配 top k", interactive=True) load_model_button = gr.Button("重新加载模型") load_model_button.click(reinit_model, show_progress=True, inputs=[llm_model, embedding_model, llm_history_len, use_ptuning_v2, top_k, chatbot], outputs=chatbot ) # 将上传的文件保存到content文件夹下,并更新下拉框 files.upload(upload_file, inputs=[files, chatbot], outputs=chatbot) load_file_button.click(get_vector_store, show_progress=True, inputs=[select_vs, chatbot], outputs=[vs_path, chatbot], ) query.submit(get_answer, [query, vs_path, chatbot], [chatbot, query], ) demo.queue(concurrency_count=3 ).launch(server_name='0.0.0.0', server_port=7860, show_api=False, share=False, inbrowser=False)