from typing import List from langchain.document_loaders.unstructured import UnstructuredFileLoader class RapidOCRPDFLoader(UnstructuredFileLoader): def _get_elements(self) -> List: def pdf2text(filepath): import fitz from rapidocr_onnxruntime import RapidOCR import numpy as np ocr = RapidOCR() doc = fitz.open(filepath) resp = "" for page in doc: # TODO: 依据文本与图片顺序调整处理方式 text = page.get_text("") resp += text + "\n" img_list = page.get_images() for img in img_list: pix = fitz.Pixmap(doc, img[0]) img_array = np.frombuffer(pix.samples, dtype=np.uint8).reshape(pix.height, pix.width, -1) result, _ = ocr(img_array) if result: ocr_result = [line[1] for line in result] resp += "\n".join(ocr_result) return resp text = pdf2text(self.file_path) from unstructured.partition.text import partition_text return partition_text(text=text, **self.unstructured_kwargs) if __name__ == "__main__": loader = RapidOCRPDFLoader(file_path="../tests/samples/ocr_test.pdf") docs = loader.load() print(docs)