import os import shutil from configs.model_config import ( KB_ROOT_PATH, CACHED_VS_NUM, EMBEDDING_MODEL, SCORE_THRESHOLD ) from server.knowledge_base.kb_service.base import KBService, SupportedVSType from functools import lru_cache from server.knowledge_base.utils import get_vs_path, load_embeddings, KnowledgeFile from langchain.vectorstores import FAISS from langchain.embeddings.base import Embeddings from typing import List, Dict, Optional from langchain.docstore.document import Document from server.utils import torch_gc, embedding_device _VECTOR_STORE_TICKS = {} @lru_cache(CACHED_VS_NUM) def load_faiss_vector_store( knowledge_base_name: str, embed_model: str = EMBEDDING_MODEL, embed_device: str = embedding_device(), embeddings: Embeddings = None, tick: int = 0, # tick will be changed by upload_doc etc. and make cache refreshed. ) -> FAISS: print(f"loading vector store in '{knowledge_base_name}'.") vs_path = get_vs_path(knowledge_base_name) if embeddings is None: embeddings = load_embeddings(embed_model, embed_device) if not os.path.exists(vs_path): os.makedirs(vs_path) if "index.faiss" in os.listdir(vs_path): search_index = FAISS.load_local(vs_path, embeddings, normalize_L2=True) else: # create an empty vector store doc = Document(page_content="init", metadata={}) search_index = FAISS.from_documents([doc], embeddings, normalize_L2=True) ids = [k for k, v in search_index.docstore._dict.items()] search_index.delete(ids) search_index.save_local(vs_path) if tick == 0: # vector store is loaded first time _VECTOR_STORE_TICKS[knowledge_base_name] = 0 return search_index def refresh_vs_cache(kb_name: str): """ make vector store cache refreshed when next loading """ _VECTOR_STORE_TICKS[kb_name] = _VECTOR_STORE_TICKS.get(kb_name, 0) + 1 print(f"知识库 {kb_name} 缓存刷新:{_VECTOR_STORE_TICKS[kb_name]}") class FaissKBService(KBService): vs_path: str kb_path: str def vs_type(self) -> str: return SupportedVSType.FAISS def get_vs_path(self): return os.path.join(self.get_kb_path(), "vector_store") def get_kb_path(self): return os.path.join(KB_ROOT_PATH, self.kb_name) def load_vector_store(self) -> FAISS: return load_faiss_vector_store( knowledge_base_name=self.kb_name, embed_model=self.embed_model, tick=_VECTOR_STORE_TICKS.get(self.kb_name, 0), ) def save_vector_store(self, vector_store: FAISS = None): vector_store = vector_store or self.load_vector_store() vector_store.save_local(self.vs_path) return vector_store def refresh_vs_cache(self): refresh_vs_cache(self.kb_name) def get_doc_by_id(self, id: str) -> Optional[Document]: vector_store = self.load_vector_store() return vector_store.docstore._dict.get(id) def do_init(self): self.kb_path = self.get_kb_path() self.vs_path = self.get_vs_path() def do_create_kb(self): if not os.path.exists(self.vs_path): os.makedirs(self.vs_path) self.load_vector_store() def do_drop_kb(self): self.clear_vs() shutil.rmtree(self.kb_path) def do_search(self, query: str, top_k: int, score_threshold: float = SCORE_THRESHOLD, embeddings: Embeddings = None, ) -> List[Document]: search_index = self.load_vector_store() docs = search_index.similarity_search_with_score(query, k=top_k, score_threshold=score_threshold) return docs def do_add_doc(self, docs: List[Document], **kwargs, ) -> List[Dict]: vector_store = self.load_vector_store() ids = vector_store.add_documents(docs) doc_infos = [{"id": id, "metadata": doc.metadata} for id, doc in zip(ids, docs)] torch_gc() if not kwargs.get("not_refresh_vs_cache"): vector_store.save_local(self.vs_path) self.refresh_vs_cache() return doc_infos def do_delete_doc(self, kb_file: KnowledgeFile, **kwargs): vector_store = self.load_vector_store() ids = [k for k, v in vector_store.docstore._dict.items() if v.metadata["source"] == kb_file.filepath] if len(ids) == 0: return None vector_store.delete(ids) if not kwargs.get("not_refresh_vs_cache"): vector_store.save_local(self.vs_path) self.refresh_vs_cache() return vector_store def do_clear_vs(self): shutil.rmtree(self.vs_path) os.makedirs(self.vs_path) self.refresh_vs_cache() def exist_doc(self, file_name: str): if super().exist_doc(file_name): return "in_db" content_path = os.path.join(self.kb_path, "content") if os.path.isfile(os.path.join(content_path, file_name)): return "in_folder" else: return False if __name__ == '__main__': faissService = FaissKBService("test") faissService.add_doc(KnowledgeFile("README.md", "test")) faissService.delete_doc(KnowledgeFile("README.md", "test")) faissService.do_drop_kb() print(faissService.search_docs("如何启动api服务"))