from langchain.llms.base import LLM from typing import Optional, List from langchain.llms.utils import enforce_stop_tokens from transformers import AutoTokenizer, AutoModel import torch DEVICE = "cuda" DEVICE_ID = "0" CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE def torch_gc(): if torch.cuda.is_available(): with torch.cuda.device(CUDA_DEVICE): torch.cuda.empty_cache() torch.cuda.ipc_collect() tokenizer = AutoTokenizer.from_pretrained( "THUDM/chatglm-6b", trust_remote_code=True ) model = ( AutoModel.from_pretrained( "THUDM/chatglm-6b", trust_remote_code=True) .half() .cuda() ) class ChatGLM(LLM): max_token: int = 10000 temperature: float = 0.1 top_p = 0.9 history = [] def __init__(self): super().__init__() @property def _llm_type(self) -> str: return "ChatGLM" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: response, updated_history = model.chat( tokenizer, prompt, history=self.history, max_length=self.max_token, temperature=self.temperature, ) print("history: ", self.history) if stop is not None: response = enforce_stop_tokens(response, stop) self.history = updated_history return response