from langchain.memory import ConversationBufferWindowMemory from server.agent.tools import tools, tool_names from server.agent.callbacks import CustomAsyncIteratorCallbackHandler, Status, dumps from langchain.agents import AgentExecutor, LLMSingleActionAgent from server.agent.custom_template import CustomOutputParser, prompt from fastapi import Body from fastapi.responses import StreamingResponse from configs.model_config import LLM_MODEL, TEMPERATURE, HISTORY_LEN from server.utils import wrap_done, get_ChatOpenAI from langchain import LLMChain from typing import AsyncIterable import asyncio from langchain.prompts.chat import ChatPromptTemplate from typing import List from server.chat.utils import History import json async def agent_chat(query: str = Body(..., description="用户输入", examples=["恼羞成怒"]), history: List[History] = Body([], description="历史对话", examples=[[ {"role": "user", "content": "我们来玩成语接龙,我先来,生龙活虎"}, {"role": "assistant", "content": "虎头虎脑"}]] ), stream: bool = Body(False, description="流式输出"), model_name: str = Body(LLM_MODEL, description="LLM 模型名称。"), temperature: float = Body(TEMPERATURE, description="LLM 采样温度", gt=0.0, le=1.0), # top_p: float = Body(TOP_P, description="LLM 核采样。勿与temperature同时设置", gt=0.0, lt=1.0), ): history = [History.from_data(h) for h in history] async def chat_iterator() -> AsyncIterable[str]: callback = CustomAsyncIteratorCallbackHandler() model = get_ChatOpenAI( model_name=model_name, temperature=temperature, ) output_parser = CustomOutputParser() llm_chain = LLMChain(llm=model, prompt=prompt) agent = LLMSingleActionAgent( llm_chain=llm_chain, output_parser=output_parser, stop=["\nObservation:"], allowed_tools=tool_names, ) # 把history转成agent的memory memory = ConversationBufferWindowMemory(k=100) for message in history: # 检查消息的角色 if message.role == 'user': # 添加用户消息 memory.chat_memory.add_user_message(message.content) else: # 添加AI消息 memory.chat_memory.add_ai_message(message.content) agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory, ) # TODO: history is not used input_msg = History(role="user", content="{{ input }}").to_msg_template(False) chat_prompt = ChatPromptTemplate.from_messages( [i.to_msg_template() for i in history] + [input_msg]) task = asyncio.create_task(wrap_done( agent_executor.acall(query, callbacks=[callback], include_run_info=True), callback.done), ) if stream: async for chunk in callback.aiter(): tools_use = [] # Use server-sent-events to stream the response data = json.loads(chunk) if data["status"] == Status.start or data["status"] == Status.complete: continue if data["status"] == Status.agent_action: yield json.dumps({"answer": "(正在使用工具,请注意工具栏变化) \n\n"}, ensure_ascii=False) if data["status"] == Status.agent_finish: tools_use.append("工具名称: " + data["tool_name"]) tools_use.append("工具输入: " + data["input_str"]) tools_use.append("工具输出: " + data["output_str"]) yield json.dumps({"tools": tools_use}, ensure_ascii=False) yield json.dumps({"answer": data["llm_token"]}, ensure_ascii=False) else: pass # agent必须要steram=True # result = [] # async for chunk in callback.aiter(): # data = json.loads(chunk) # status = data["status"] # if status == Status.start: # result.append(chunk) # elif status == Status.running: # result[-1]["llm_token"] += chunk["llm_token"] # elif status == Status.complete: # result[-1]["status"] = Status.complete # elif status == Status.agent_finish: # result.append(chunk) # elif status == Status.agent_finish: # pass # yield dumps(result) await task return StreamingResponse(chat_iterator(), media_type="text/event-stream")