from abc import ABC from langchain.llms.base import LLM from typing import Optional, List from models.loader import LoaderCheckPoint from models.base import (BaseAnswer, AnswerResult) class BaichuanLLMChain(BaseAnswer, LLM, ABC): max_token: int = 10000 temperature: float = 0.01 top_p = 0.9 checkPoint: LoaderCheckPoint = None # history = [] history_len: int = 10 def __init__(self, checkPoint: LoaderCheckPoint = None): super().__init__() self.checkPoint = checkPoint @property def _llm_type(self) -> str: return "BaichuanLLMChain" @property def _check_point(self) -> LoaderCheckPoint: return self.checkPoint @property def _history_len(self) -> int: return self.history_len def set_history_len(self, history_len: int = 10) -> None: self.history_len = history_len def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: print(f"__call:{prompt}") response, _ = self.checkPoint.model.chat( self.checkPoint.tokenizer, prompt, # history=[], # max_length=self.max_token, # temperature=self.temperature ) print(f"response:{response}") print(f"+++++++++++++++++++++++++++++++++++") return response def _generate_answer(self, prompt: str, history: List[List[str]] = [], streaming: bool = False): messages = [] messages.append({"role": "user", "content": prompt}) if streaming: for inum, stream_resp in enumerate(self.checkPoint.model.chat( self.checkPoint.tokenizer, messages, stream=True )): self.checkPoint.clear_torch_cache() answer_result = AnswerResult() answer_result.llm_output = {"answer": stream_resp} yield answer_result else: response = self.checkPoint.model.chat( self.checkPoint.tokenizer, messages ) self.checkPoint.clear_torch_cache() answer_result = AnswerResult() answer_result.llm_output = {"answer": response} yield answer_result