from fastapi import Body, Request from fastapi.responses import StreamingResponse from configs.model_config import (llm_model_dict, LLM_MODEL, PROMPT_TEMPLATE, VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD) from server.chat.utils import wrap_done from server.utils import BaseResponse from langchain.chat_models import ChatOpenAI from langchain import LLMChain from langchain.callbacks import AsyncIteratorCallbackHandler from typing import AsyncIterable, List, Optional import asyncio from langchain.prompts.chat import ChatPromptTemplate from server.chat.utils import History from server.knowledge_base.kb_service.base import KBService, KBServiceFactory import json import os from urllib.parse import urlencode from server.knowledge_base.kb_doc_api import search_docs def knowledge_base_chat(query: str = Body(..., description="用户输入", examples=["你好"]), knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]), top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"), score_threshold: float = Body(SCORE_THRESHOLD, description="知识库匹配相关度阈值,取值范围在0-1之间,SCORE越小,相关度越高,取到1相当于不筛选,建议设置在0.5左右", ge=0, le=1), history: List[History] = Body([], description="历史对话", examples=[[ {"role": "user", "content": "我们来玩成语接龙,我先来,生龙活虎"}, {"role": "assistant", "content": "虎头虎脑"}]] ), stream: bool = Body(False, description="流式输出"), local_doc_url: bool = Body(False, description="知识文件返回本地路径(true)或URL(false)"), request: Request = None, ): kb = KBServiceFactory.get_service_by_name(knowledge_base_name) if kb is None: return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}") history = [History(**h) if isinstance(h, dict) else h for h in history] async def knowledge_base_chat_iterator(query: str, kb: KBService, top_k: int, history: Optional[List[History]], ) -> AsyncIterable[str]: callback = AsyncIteratorCallbackHandler() model = ChatOpenAI( streaming=True, verbose=True, callbacks=[callback], openai_api_key=llm_model_dict[LLM_MODEL]["api_key"], openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"], model_name=LLM_MODEL ) docs = search_docs(query, knowledge_base_name, top_k, score_threshold) context = "\n".join([doc.page_content for doc in docs]) chat_prompt = ChatPromptTemplate.from_messages( [i.to_msg_tuple() for i in history] + [("human", PROMPT_TEMPLATE)]) chain = LLMChain(prompt=chat_prompt, llm=model) # Begin a task that runs in the background. task = asyncio.create_task(wrap_done( chain.acall({"context": context, "question": query}), callback.done), ) source_documents = [] for inum, doc in enumerate(docs): filename = os.path.split(doc.metadata["source"])[-1] if local_doc_url: url = "file://" + doc.metadata["source"] else: parameters = urlencode({"knowledge_base_name": knowledge_base_name, "file_name":filename}) url = f"{request.base_url}knowledge_base/download_doc?" + parameters text = f"""出处 [{inum + 1}] [{filename}]({url}) \n\n{doc.page_content}\n\n""" source_documents.append(text) if stream: async for token in callback.aiter(): # Use server-sent-events to stream the response yield json.dumps({"answer": token, "docs": source_documents}, ensure_ascii=False) else: answer = "" async for token in callback.aiter(): answer += token yield json.dumps({"answer": answer, "docs": source_documents}, ensure_ascii=False) await task return StreamingResponse(knowledge_base_chat_iterator(query, kb, top_k, history), media_type="text/event-stream")