import argparse import os # Additional argparse types def path(string): if not string: return '' s = os.path.expanduser(string) if not os.path.exists(s): raise argparse.ArgumentTypeError(f'No such file or directory: "{string}"') return s def file_path(string): if not string: return '' s = os.path.expanduser(string) if not os.path.isfile(s): raise argparse.ArgumentTypeError(f'No such file: "{string}"') return s def dir_path(string): if not string: return '' s = os.path.expanduser(string) if not os.path.isdir(s): raise argparse.ArgumentTypeError(f'No such directory: "{string}"') return s parser = argparse.ArgumentParser(prog='langchina-ChatGLM', description='基于langchain和chatGML的LLM文档阅读器') parser.add_argument('--no-remote-model', action='store_true', default=False, help='remote in the model on loader checkpoint, if your load local model to add the ` --no-remote-model`') parser.add_argument('--model', type=str, default='chatglm-6b', help='Name of the model to load by default.') parser.add_argument('--lora', type=str, help='Name of the LoRA to apply to the model by default.') parser.add_argument("--model-dir", type=str, default='model/', help="Path to directory with all the models") parser.add_argument("--lora-dir", type=str, default='loras/', help="Path to directory with all the loras") # Accelerate/transformers parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text. Warning: Training on CPU is extremely slow.') parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.') parser.add_argument('--gpu-memory', type=str, nargs="+", help='Maxmimum GPU memory in GiB to be allocated per GPU. Example: --gpu-memory 10 for a single GPU, --gpu-memory 10 5 for two GPUs. You can also set values in MiB like --gpu-memory 3500MiB.') parser.add_argument('--cpu-memory', type=str, help='Maximum CPU memory in GiB to allocate for offloaded weights. Same as above.') parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.') parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.') args = parser.parse_args([]) # Generares dict with a default value for each argument DEFAULT_ARGS = vars(args)