import os import sqlite3 import datetime import shutil from langchain.vectorstores import FAISS from server.knowledge_base.utils import (get_vs_path, get_kb_path, get_doc_path, refresh_vs_cache, load_embeddings) from configs.model_config import (embedding_model_dict, EMBEDDING_MODEL, EMBEDDING_DEVICE, DB_ROOT_PATH) from server.utils import torch_gc from server.knowledge_base.knowledge_file import KnowledgeFile SUPPORTED_VS_TYPES = ["faiss", "milvus"] def list_kbs_from_db(): conn = sqlite3.connect(DB_ROOT_PATH) c = conn.cursor() c.execute('''CREATE TABLE if not exists knowledge_base (id INTEGER PRIMARY KEY AUTOINCREMENT, kb_name TEXT, vs_type TEXT, embed_model TEXT, file_count INTEGER, create_time DATETIME) ''') c.execute(f'''SELECT kb_name FROM knowledge_base WHERE file_count>0 ''') kbs = [i[0] for i in c.fetchall() if i] conn.commit() conn.close() return kbs def add_kb_to_db(kb_name, vs_type, embed_model): conn = sqlite3.connect(DB_ROOT_PATH) c = conn.cursor() # Create table c.execute('''CREATE TABLE if not exists knowledge_base (id INTEGER PRIMARY KEY AUTOINCREMENT, kb_name TEXT, vs_type TEXT, embed_model TEXT, file_count INTEGER, create_time DATETIME) ''') # Insert a row of data c.execute(f"""INSERT INTO knowledge_base (kb_name, vs_type, embed_model, file_count, create_time) VALUES ('{kb_name}','{vs_type}','{embed_model}', 0,'{datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}')""") conn.commit() conn.close() def kb_exists(kb_name): conn = sqlite3.connect(DB_ROOT_PATH) c = conn.cursor() c.execute('''CREATE TABLE if not exists knowledge_base (id INTEGER PRIMARY KEY AUTOINCREMENT, kb_name TEXT, vs_type TEXT, embed_model TEXT, file_count INTEGER, create_time DATETIME) ''') c.execute(f'''SELECT COUNT(*) FROM knowledge_base WHERE kb_name="{kb_name}" ''') status = True if c.fetchone()[0] else False conn.commit() conn.close() return status def load_kb_from_db(kb_name): conn = sqlite3.connect(DB_ROOT_PATH) c = conn.cursor() c.execute('''CREATE TABLE if not exists knowledge_base (id INTEGER PRIMARY KEY AUTOINCREMENT, kb_name TEXT, vs_type TEXT, embed_model TEXT, file_count INTEGER, create_time DATETIME) ''') c.execute(f'''SELECT kb_name, vs_type, embed_model FROM knowledge_base WHERE kb_name="{kb_name}" ''') resp = c.fetchone() if resp: kb_name, vs_type, embed_model = resp else: kb_name, vs_type, embed_model = None, None, None conn.commit() conn.close() return kb_name, vs_type, embed_model def delete_kb_from_db(kb_name): conn = sqlite3.connect(DB_ROOT_PATH) c = conn.cursor() # delete kb from table knowledge_base c.execute('''CREATE TABLE if not exists knowledge_base (id INTEGER PRIMARY KEY AUTOINCREMENT, kb_name TEXT, vs_type TEXT, embed_model TEXT, file_count INTEGER, create_time DATETIME) ''') c.execute(f'''DELETE FROM knowledge_base WHERE kb_name="{kb_name}" ''') # delete files in kb from table knowledge_files c.execute('''CREATE TABLE if not exists knowledge_files (id INTEGER PRIMARY KEY AUTOINCREMENT, file_name TEXT, file_ext TEXT, kb_name TEXT, document_loader_name TEXT, text_splitter_name TEXT, file_version INTEGER, create_time DATETIME) ''') # Insert a row of data c.execute(f"""DELETE FROM knowledge_files WHERE kb_name="{kb_name}" """) conn.commit() conn.close() return True def list_docs_from_db(kb_name): conn = sqlite3.connect(DB_ROOT_PATH) c = conn.cursor() c.execute('''CREATE TABLE if not exists knowledge_files (id INTEGER PRIMARY KEY AUTOINCREMENT, file_name TEXT, file_ext TEXT, kb_name TEXT, document_loader_name TEXT, text_splitter_name TEXT, file_version INTEGER, create_time DATETIME) ''') c.execute(f'''SELECT file_name FROM knowledge_files WHERE kb_name="{kb_name}" ''') kbs = [i[0] for i in c.fetchall() if i] conn.commit() conn.close() return kbs def add_doc_to_db(kb_file: KnowledgeFile): conn = sqlite3.connect(DB_ROOT_PATH) c = conn.cursor() # Create table c.execute('''CREATE TABLE if not exists knowledge_files (id INTEGER PRIMARY KEY AUTOINCREMENT, file_name TEXT, file_ext TEXT, kb_name TEXT, document_loader_name TEXT, text_splitter_name TEXT, file_version INTEGER, create_time DATETIME) ''') # Insert a row of data # TODO: 同名文件添加至知识库时,file_version增加 c.execute(f"""INSERT INTO knowledge_files (file_name, file_ext, kb_name, document_loader_name, text_splitter_name, file_version, create_time) VALUES ('{kb_file.filename}','{kb_file.ext}','{kb_file.kb_name}', '{kb_file.document_loader_name}', '{kb_file.text_splitter_name}',0,'{datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}')""") conn.commit() conn.close() def delete_file_from_db(kb_file: KnowledgeFile): conn = sqlite3.connect(DB_ROOT_PATH) c = conn.cursor() # delete files in kb from table knowledge_files c.execute('''CREATE TABLE if not exists knowledge_files (id INTEGER PRIMARY KEY AUTOINCREMENT, file_name TEXT, file_ext TEXT, kb_name TEXT, document_loader_name TEXT, text_splitter_name TEXT, file_version INTEGER, create_time DATETIME) ''') # Insert a row of data c.execute(f"""DELETE FROM knowledge_files WHERE file_name="{kb_file.filename}" AND kb_name="{kb_file.kb_name}" """) conn.commit() conn.close() return True def doc_exists(kb_file: KnowledgeFile): conn = sqlite3.connect(DB_ROOT_PATH) c = conn.cursor() c.execute('''CREATE TABLE if not exists knowledge_files (id INTEGER PRIMARY KEY AUTOINCREMENT, file_name TEXT, file_ext TEXT, kb_name TEXT, document_loader_name TEXT, text_splitter_name TEXT, file_version INTEGER, create_time DATETIME) ''') c.execute(f'''SELECT COUNT(*) FROM knowledge_files WHERE file_name="{kb_file.filename}" AND kb_name="{kb_file.kb_name}" ''') status = True if c.fetchone()[0] else False conn.commit() conn.close() return status class KnowledgeBase: def __init__(self, knowledge_base_name: str, vector_store_type: str = "faiss", embed_model: str = EMBEDDING_MODEL, ): self.kb_name = knowledge_base_name if vector_store_type not in SUPPORTED_VS_TYPES: raise ValueError(f"暂未支持向量库类型 {vector_store_type}") self.vs_type = vector_store_type if embed_model not in embedding_model_dict.keys(): raise ValueError(f"暂未支持embedding模型 {embed_model}") self.embed_model = embed_model self.kb_path = get_kb_path(self.kb_name) self.doc_path = get_doc_path(self.kb_name) if self.vs_type in ["faiss"]: self.vs_path = get_vs_path(self.kb_name) elif self.vs_type in ["milvus"]: pass def create(self): if not os.path.exists(self.doc_path): os.makedirs(self.doc_path) if self.vs_type in ["faiss"]: if not os.path.exists(self.vs_path): os.makedirs(self.vs_path) add_kb_to_db(self.kb_name, self.vs_type, self.embed_model) elif self.vs_type in ["milvus"]: # TODO: 创建milvus库 pass return True def add_doc(self, kb_file: KnowledgeFile): docs = kb_file.file2text() vs_path = get_vs_path(self.kb_name) embeddings = load_embeddings(self.embed_model, EMBEDDING_DEVICE) if self.vs_type in ["faiss"]: if os.path.exists(vs_path) and "index.faiss" in os.listdir(vs_path): vector_store = FAISS.load_local(vs_path, embeddings) vector_store.add_documents(docs) torch_gc() else: if not os.path.exists(vs_path): os.makedirs(vs_path) vector_store = FAISS.from_documents(docs, embeddings) # docs 为Document列表 torch_gc() vector_store.save_local(vs_path) add_doc_to_db(kb_file) refresh_vs_cache(self.kb_name) elif self.vs_type in ["milvus"]: # TODO: 向milvus库中增加文件 pass def delete_doc(self, kb_file: KnowledgeFile): if os.path.exists(kb_file.filepath): os.remove(kb_file.filepath) if self.vs_type in ["faiss"]: # TODO: 从FAISS向量库中删除文档 delete_file_from_db(kb_file) def exist_doc(self, file_name: str): return doc_exists(KnowledgeFile(knowledge_base_name=self.kb_name, filename=file_name)) def list_docs(self): return list_docs_from_db(self.kb_name) @classmethod def exists(cls, knowledge_base_name: str): return kb_exists(knowledge_base_name) @classmethod def load(cls, knowledge_base_name: str): kb_name, vs_type, embed_model = load_kb_from_db(knowledge_base_name) return cls(kb_name, vs_type, embed_model) @classmethod def delete(cls, knowledge_base_name: str): kb = cls.load(knowledge_base_name) if kb.vs_type in ["faiss"]: shutil.rmtree(kb.kb_path) elif kb.vs_type in ["milvus"]: # TODO: 删除milvus库 pass status = delete_kb_from_db(knowledge_base_name) return status @classmethod def list_kbs(cls): return list_kbs_from_db() if __name__ == "__main__": # kb = KnowledgeBase("123", "faiss") # kb.create() kb = KnowledgeBase.load(knowledge_base_name="123") print()