from langchain.llms.base import LLM from typing import Optional, List from langchain.llms.utils import enforce_stop_tokens from transformers import AutoTokenizer, AutoModel import torch DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" DEVICE_ID = "0" if torch.cuda.is_available() else None CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE def torch_gc(): if torch.cuda.is_available(): with torch.cuda.device(CUDA_DEVICE): torch.cuda.empty_cache() torch.cuda.ipc_collect() class ChatGLM(LLM): max_token: int = 10000 temperature: float = 0.01 top_p = 0.9 history = [] tokenizer: object = None model: object = None history_len: int = 10 def __init__(self): super().__init__() @property def _llm_type(self) -> str: return "ChatGLM" def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: response, _ = self.model.chat( self.tokenizer, prompt, history=self.history[-self.history_len:], max_length=self.max_token, temperature=self.temperature, ) torch_gc() if stop is not None: response = enforce_stop_tokens(response, stop) self.history = self.history+[[None, response]] return response def load_model(self, model_name_or_path: str = "THUDM/chatglm-6b"): self.tokenizer = AutoTokenizer.from_pretrained( model_name_or_path, trust_remote_code=True ) if torch.cuda.is_available(): self.model = ( AutoModel.from_pretrained( model_name_or_path, trust_remote_code=True) .half() .cuda() ) elif torch.backends.mps.is_available(): self.model = ( AutoModel.from_pretrained( model_name_or_path, trust_remote_code=True) .float() .to('mps') ) else: self.model = ( AutoModel.from_pretrained( model_name_or_path, trust_remote_code=True) .float() ) self.model = self.model.eval()