from langchain.chains import RetrievalQA from langchain.prompts.chat import ( ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate, ) from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.document_loaders import UnstructuredFileLoader from chatglm_llm import ChatGLM import sentence_transformers import torch import os import readline # Global Parameters EMBEDDING_MODEL = "text2vec" VECTOR_SEARCH_TOP_K = 6 LLM_MODEL = "chatglm-6b" LLM_HISTORY_LEN = 3 DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" # Show reply with source text from input document REPLY_WITH_SOURCE = True embedding_model_dict = { "ernie-tiny": "nghuyong/ernie-3.0-nano-zh", "ernie-base": "nghuyong/ernie-3.0-base-zh", "text2vec": "GanymedeNil/text2vec-large-chinese", } llm_model_dict = { "chatglm-6b-int4-qe": "THUDM/chatglm-6b-int4-qe", "chatglm-6b-int4": "THUDM/chatglm-6b-int4", "chatglm-6b": "THUDM/chatglm-6b", } def init_cfg(LLM_MODEL, EMBEDDING_MODEL, LLM_HISTORY_LEN, V_SEARCH_TOP_K=6): global chatglm, embeddings, VECTOR_SEARCH_TOP_K VECTOR_SEARCH_TOP_K = V_SEARCH_TOP_K chatglm = ChatGLM() chatglm.load_model(model_name_or_path=llm_model_dict[LLM_MODEL]) chatglm.history_len = LLM_HISTORY_LEN embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[EMBEDDING_MODEL],) embeddings.client = sentence_transformers.SentenceTransformer(embeddings.model_name, device=DEVICE) def init_knowledge_vector_store(filepath:str): if not os.path.exists(filepath): print("路径不存在") return None elif os.path.isfile(filepath): file = os.path.split(filepath)[-1] try: loader = UnstructuredFileLoader(filepath, mode="elements") docs = loader.load() print(f"{file} 已成功加载") except: print(f"{file} 未能成功加载") return None elif os.path.isdir(filepath): docs = [] for file in os.listdir(filepath): fullfilepath = os.path.join(filepath, file) try: loader = UnstructuredFileLoader(fullfilepath, mode="elements") docs += loader.load() print(f"{file} 已成功加载") except: print(f"{file} 未能成功加载") vector_store = FAISS.from_documents(docs, embeddings) return vector_store def get_knowledge_based_answer(query, vector_store, chat_history=[]): global chatglm, embeddings system_template = """基于以下内容,简洁和专业的来回答用户的问题。 如果无法从中得到答案,请说 "不知道" 或 "没有足够的相关信息",不要试图编造答案。答案请使用中文。 ---------------- {context} ---------------- """ messages = [ SystemMessagePromptTemplate.from_template(system_template), HumanMessagePromptTemplate.from_template("{question}"), ] prompt = ChatPromptTemplate.from_messages(messages) chatglm.history = chat_history knowledge_chain = RetrievalQA.from_llm( llm=chatglm, retriever=vector_store.as_retriever(search_kwargs={"k": VECTOR_SEARCH_TOP_K}), prompt=prompt ) knowledge_chain.return_source_documents = True result = knowledge_chain({"query": query}) chatglm.history[-1][0] = query return result, chatglm.history if __name__ == "__main__": init_cfg(LLM_MODEL, EMBEDDING_MODEL, LLM_HISTORY_LEN) vector_store = None while not vector_store: filepath = input("Input your local knowledge file path 请输入本地知识文件路径:") vector_store = init_knowledge_vector_store(filepath) history = [] while True: query = input("Input your question 请输入问题:") resp, history = get_knowledge_based_answer(query=query, vector_store=vector_store, chat_history=history) if REPLY_WITH_SOURCE: print(resp) else: print(resp["result"])