from langchain.prompts.prompt import PromptTemplate from langchain.chains import ChatVectorDBChain from langchain.prompts.chat import ( ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate, ) from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.document_loaders import UnstructuredFileLoader from chatglm_llm import ChatGLM def init_knowledge_vector_store(filepath): embeddings = HuggingFaceEmbeddings(model_name="GanymedeNil/text2vec-large-chinese", ) loader = UnstructuredFileLoader(filepath, mode="elements") docs = loader.load() vector_store = FAISS.from_documents(docs, embeddings) return vector_store def get_knowledge_based_answer(query, vector_store, chat_history=[]): system_template = """基于以下内容,简洁和专业的来回答用户的问题。 如果无法从中得到答案,请说 "不知道" 或 "没有足够的相关信息",不要试图编造答案。答案请使用中文。 ---------------- {context} ---------------- """ messages = [ SystemMessagePromptTemplate.from_template(system_template), HumanMessagePromptTemplate.from_template("{question}"), ] prompt = ChatPromptTemplate.from_messages(messages) condese_propmt_template = """任务: 给一段对话和一个后续问题,将后续问题改写成一个独立的问题。确保问题是完整的,没有模糊的指代。 ---------------- 聊天记录: {chat_history} ---------------- 后续问题:{question} ---------------- 改写后的独立、完整的问题:""" new_question_prompt = PromptTemplate.from_template(condese_propmt_template) chatglm = ChatGLM() chatglm.history = chat_history knowledge_chain = ChatVectorDBChain.from_llm( llm=chatglm, vectorstore=vector_store, qa_prompt=prompt, condense_question_prompt=new_question_prompt, ) knowledge_chain.return_source_documents = True knowledge_chain.top_k_docs_for_context = 10 result = knowledge_chain({"question": query, "chat_history": chat_history}) return result, chatglm.history if __name__ == "__main__": filepath = input("Input your local knowledge file path 请输入本地知识文件路径:") vector_store = init_knowledge_vector_store(filepath) history = [] while True: query = input("Input your question 请输入问题:") resp, history = get_knowledge_based_answer(query=query, vector_store=vector_store, chat_history=history) print(resp)