from fastapi import Body from fastapi.responses import StreamingResponse from configs.model_config import (llm_model_dict, LLM_MODEL, PROMPT_TEMPLATE, VECTOR_SEARCH_TOP_K) from server.chat.utils import wrap_done from server.utils import BaseResponse import os from server.knowledge_base.utils import get_kb_path from langchain.chat_models import ChatOpenAI from langchain import LLMChain from langchain.callbacks import AsyncIteratorCallbackHandler from typing import AsyncIterable import asyncio from langchain.prompts import PromptTemplate from server.knowledge_base.utils import lookup_vs import json def knowledge_base_chat(query: str = Body(..., description="用户输入", example="你好"), knowledge_base_name: str = Body(..., description="知识库名称", example="samples"), top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"), ): kb_path = get_kb_path(knowledge_base_name) if not os.path.exists(kb_path): return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}") async def knowledge_base_chat_iterator(query: str, knowledge_base_name: str, top_k: int, ) -> AsyncIterable[str]: callback = AsyncIteratorCallbackHandler() model = ChatOpenAI( streaming=True, verbose=True, callbacks=[callback], openai_api_key=llm_model_dict[LLM_MODEL]["api_key"], openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"], model_name=LLM_MODEL ) docs = lookup_vs(query, knowledge_base_name, top_k) context = "\n".join([doc.page_content for doc in docs]) prompt = PromptTemplate(template=PROMPT_TEMPLATE, input_variables=["context", "question"]) chain = LLMChain(prompt=prompt, llm=model) # Begin a task that runs in the background. task = asyncio.create_task(wrap_done( chain.acall({"context": context, "question": query}), callback.done), ) source_documents = [ f"""出处 [{inum + 1}] [{doc.metadata["source"]}]({doc.metadata["source"]}) \n\n{doc.page_content}\n\n""" for inum, doc in enumerate(docs) ] async for token in callback.aiter(): # Use server-sent-events to stream the response yield json.dumps({"answer": token, "docs": source_documents}) await task return StreamingResponse(knowledge_base_chat_iterator(query, knowledge_base_name, top_k), media_type="text/event-stream")