from typing import List import numpy as np from faiss import normalize_L2 from langchain.embeddings.base import Embeddings from langchain.schema import Document from langchain.vectorstores import Milvus from sklearn.preprocessing import normalize from configs.model_config import SCORE_THRESHOLD, kbs_config from server.knowledge_base.kb_service.base import KBService, SupportedVSType, EmbeddingsFunAdapter, \ score_threshold_process from server.knowledge_base.utils import KnowledgeFile class MilvusKBService(KBService): milvus: Milvus @staticmethod def get_collection(milvus_name): from pymilvus import Collection return Collection(milvus_name) @staticmethod def search(milvus_name, content, limit=3): search_params = { "metric_type": "L2", "params": {"nprobe": 10}, } c = MilvusKBService.get_collection(milvus_name) return c.search(content, "embeddings", search_params, limit=limit, output_fields=["content"]) def do_create_kb(self): pass def vs_type(self) -> str: return SupportedVSType.MILVUS def _load_milvus(self, embeddings: Embeddings = None): if embeddings is None: embeddings = self._load_embeddings() self.milvus = Milvus(embedding_function=EmbeddingsFunAdapter(embeddings), collection_name=self.kb_name, connection_args=kbs_config.get("milvus")) def do_init(self): self._load_milvus() def do_drop_kb(self): if self.milvus.col: self.milvus.col.drop() def do_search(self, query: str, top_k: int, score_threshold: float, embeddings: Embeddings): self._load_milvus(embeddings=EmbeddingsFunAdapter(embeddings)) return score_threshold_process(score_threshold, top_k, self.milvus.similarity_search_with_score(query, top_k)) def do_add_doc(self, docs: List[Document], **kwargs): self.milvus.add_documents(docs) def do_delete_doc(self, kb_file: KnowledgeFile, **kwargs): filepath = kb_file.filepath.replace('\\', '\\\\') delete_list = [item.get("pk") for item in self.milvus.col.query(expr=f'source == "{filepath}"', output_fields=["pk"])] self.milvus.col.delete(expr=f'pk in {delete_list}') def do_clear_vs(self): if self.milvus.col: self.milvus.col.drop() if __name__ == '__main__': # 测试建表使用 from server.db.base import Base, engine Base.metadata.create_all(bind=engine) milvusService = MilvusKBService("test") milvusService.add_doc(KnowledgeFile("README.md", "test")) milvusService.delete_doc(KnowledgeFile("README.md", "test")) milvusService.do_drop_kb() print(milvusService.search_docs("如何启动api服务"))