import streamlit as st
from webui_pages.utils import *
from streamlit_chatbox import *
from datetime import datetime
from server.chat.search_engine_chat import SEARCH_ENGINES
import os
from configs import LLM_MODEL, TEMPERATURE
from server.utils import get_model_worker_config
from typing import List, Dict
chat_box = ChatBox(
assistant_avatar=os.path.join(
"img",
"chatchat_icon_blue_square_v2.png"
)
)
def get_messages_history(history_len: int, content_in_expander: bool = False) -> List[Dict]:
'''
返回消息历史。
content_in_expander控制是否返回expander元素中的内容,一般导出的时候可以选上,传入LLM的history不需要
'''
def filter(msg):
content = [x for x in msg["elements"] if x._output_method in ["markdown", "text"]]
if not content_in_expander:
content = [x for x in content if not x._in_expander]
content = [x.content for x in content]
return {
"role": msg["role"],
"content": "\n\n".join(content),
}
return chat_box.filter_history(history_len=history_len, filter=filter)
def dialogue_page(api: ApiRequest):
chat_box.init_session()
with st.sidebar:
# TODO: 对话模型与会话绑定
def on_mode_change():
mode = st.session_state.dialogue_mode
text = f"已切换到 {mode} 模式。"
if mode == "知识库问答":
cur_kb = st.session_state.get("selected_kb")
if cur_kb:
text = f"{text} 当前知识库: `{cur_kb}`。"
st.toast(text)
# sac.alert(text, description="descp", type="success", closable=True, banner=True)
dialogue_mode = st.selectbox("请选择对话模式:",
["LLM 对话",
"知识库问答",
"搜索引擎问答",
"自定义Agent问答",
],
index=3,
on_change=on_mode_change,
key="dialogue_mode",
)
def on_llm_change():
config = get_model_worker_config(llm_model)
if not config.get("online_api"): # 只有本地model_worker可以切换模型
st.session_state["prev_llm_model"] = llm_model
st.session_state["cur_llm_model"] = st.session_state.llm_model
def llm_model_format_func(x):
if x in running_models:
return f"{x} (Running)"
return x
running_models = api.list_running_models()
available_models = []
config_models = api.list_config_models()
for models in config_models.values():
for m in models:
if m not in running_models:
available_models.append(m)
llm_models = running_models + available_models
index = llm_models.index(st.session_state.get("cur_llm_model", LLM_MODEL))
llm_model = st.selectbox("选择LLM模型:",
llm_models,
index,
format_func=llm_model_format_func,
on_change=on_llm_change,
key="llm_model",
)
if (st.session_state.get("prev_llm_model") != llm_model
and not get_model_worker_config(llm_model).get("online_api")
and llm_model not in running_models):
with st.spinner(f"正在加载模型: {llm_model},请勿进行操作或刷新页面"):
prev_model = st.session_state.get("prev_llm_model")
r = api.change_llm_model(prev_model, llm_model)
if msg := check_error_msg(r):
st.error(msg)
elif msg := check_success_msg(r):
st.success(msg)
st.session_state["prev_llm_model"] = llm_model
temperature = st.slider("Temperature:", 0.0, 1.0, TEMPERATURE, 0.05)
history_len = st.number_input("历史对话轮数:", 0, 20, HISTORY_LEN)
LLM_MODEL_WEBUI = llm_model
TEMPERATURE_WEBUI = temperature
def on_kb_change():
st.toast(f"已加载知识库: {st.session_state.selected_kb}")
if dialogue_mode == "知识库问答":
with st.expander("知识库配置", True):
kb_list = api.list_knowledge_bases(no_remote_api=True)
selected_kb = st.selectbox(
"请选择知识库:",
kb_list,
on_change=on_kb_change,
key="selected_kb",
)
kb_top_k = st.number_input("匹配知识条数:", 1, 20, VECTOR_SEARCH_TOP_K)
score_threshold = st.slider("知识匹配分数阈值:", 0.0, 1.0, float(SCORE_THRESHOLD), 0.01)
# chunk_content = st.checkbox("关联上下文", False, disabled=True)
# chunk_size = st.slider("关联长度:", 0, 500, 250, disabled=True)
elif dialogue_mode == "搜索引擎问答":
search_engine_list = list(SEARCH_ENGINES.keys())
with st.expander("搜索引擎配置", True):
search_engine = st.selectbox(
label="请选择搜索引擎",
options=search_engine_list,
index=search_engine_list.index("duckduckgo") if "duckduckgo" in search_engine_list else 0,
)
se_top_k = st.number_input("匹配搜索结果条数:", 1, 20, SEARCH_ENGINE_TOP_K)
# Display chat messages from history on app rerun
chat_box.output_messages()
chat_input_placeholder = "请输入对话内容,换行请使用Shift+Enter "
if prompt := st.chat_input(chat_input_placeholder, key="prompt"):
history = get_messages_history(history_len)
chat_box.user_say(prompt)
if dialogue_mode == "LLM 对话":
chat_box.ai_say("正在思考...")
text = ""
r = api.chat_chat(prompt, history=history, model=llm_model, temperature=temperature)
for t in r:
if error_msg := check_error_msg(t): # check whether error occured
st.error(error_msg)
break
text += t
chat_box.update_msg(text)
chat_box.update_msg(text, streaming=False) # 更新最终的字符串,去除光标
elif dialogue_mode == "自定义Agent问答":
chat_box.ai_say([
f"正在思考...",
Markdown("...", in_expander=True, title="思考过程", state="complete"),
])
text = ""
ans = ""
support_agent = ["gpt", "Qwen", "qwen-api", "baichuan-api"] # 目前支持agent的模型
if not any(agent in llm_model for agent in support_agent):
ans += "正在思考... \n\n 该模型并没有进行Agent对齐,无法正常使用Agent功能!\n\n\n请更换 GPT4或Qwen-14B等支持Agent的模型获得更好的体验! \n\n\n"
chat_box.update_msg(ans, element_index=0, streaming=False)
for d in api.agent_chat(prompt,
history=history,
model=llm_model,
temperature=temperature):
try:
d = json.loads(d)
except:
pass
if error_msg := check_error_msg(d): # check whether error occured
st.error(error_msg)
elif chunk := d.get("final_answer"):
ans += chunk
chat_box.update_msg(ans, element_index=0)
elif chunk := d.get("answer"):
text += chunk
chat_box.update_msg(text, element_index=1)
elif chunk := d.get("tools"):
text += "\n\n".join(d.get("tools", []))
chat_box.update_msg(text, element_index=1)
chat_box.update_msg(ans, element_index=0, streaming=False)
chat_box.update_msg(text, element_index=1, streaming=False)
elif dialogue_mode == "知识库问答":
chat_box.ai_say([
f"正在查询知识库 `{selected_kb}` ...",
Markdown("...", in_expander=True, title="知识库匹配结果", state="complete"),
])
text = ""
for d in api.knowledge_base_chat(prompt,
knowledge_base_name=selected_kb,
top_k=kb_top_k,
score_threshold=score_threshold,
history=history,
model=llm_model,
temperature=temperature):
if error_msg := check_error_msg(d): # check whether error occured
st.error(error_msg)
elif chunk := d.get("answer"):
text += chunk
chat_box.update_msg(text, element_index=0)
chat_box.update_msg(text, element_index=0, streaming=False)
chat_box.update_msg("\n\n".join(d.get("docs", [])), element_index=1, streaming=False)
elif dialogue_mode == "搜索引擎问答":
chat_box.ai_say([
f"正在执行 `{search_engine}` 搜索...",
Markdown("...", in_expander=True, title="网络搜索结果", state="complete"),
])
text = ""
for d in api.search_engine_chat(prompt,
search_engine_name=search_engine,
top_k=se_top_k,
history=history,
model=llm_model,
temperature=temperature):
if error_msg := check_error_msg(d): # check whether error occured
st.error(error_msg)
elif chunk := d.get("answer"):
text += chunk
chat_box.update_msg(text, element_index=0)
chat_box.update_msg(text, element_index=0, streaming=False)
chat_box.update_msg("\n\n".join(d.get("docs", [])), element_index=1, streaming=False)
now = datetime.now()
with st.sidebar:
cols = st.columns(2)
export_btn = cols[0]
if cols[1].button(
"清空对话",
use_container_width=True,
):
chat_box.reset_history()
st.experimental_rerun()
export_btn.download_button(
"导出记录",
"".join(chat_box.export2md()),
file_name=f"{now:%Y-%m-%d %H.%M}_对话记录.md",
mime="text/markdown",
use_container_width=True,
)