import gradio as gr import os import shutil import knowledge_based_chatglm as kb def get_file_list(): if not os.path.exists("content"): return [] return [f for f in os.listdir("content")] file_list = get_file_list() embedding_model_dict_list = list(kb.embedding_model_dict.keys()) llm_model_dict_list = list(kb.llm_model_dict.keys()) def upload_file(file): if not os.path.exists("content"): os.mkdir("content") filename = os.path.basename(file.name) shutil.move(file.name, "content/" + filename) # file_list首位插入新上传的文件 file_list.insert(0, filename) return gr.Dropdown.update(choices=file_list, value=filename) def get_answer(query, vector_store, history): resp, history = kb.get_knowledge_based_answer( query=query, vector_store=vector_store, chat_history=history) return history, history def get_model_status(history): return history + [[None, "模型已完成加载,请选择要加载的文档"]] def get_file_status(history): return history + [[None, "文档已完成加载,请开始提问"]] with gr.Blocks(css=""" .importantButton { background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important; border: none !important; } .importantButton:hover { background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important; border: none !important; } """) as demo: gr.Markdown( f""" # 🎉langchain-ChatGLM WebUI🎉 👍 [https://github.com/imClumsyPanda/langchain-ChatGLM](https://github.com/imClumsyPanda/langchain-ChatGLM) """) with gr.Row(): with gr.Column(scale=2): chatbot = gr.Chatbot([[None, """欢迎使用 langchain-ChatGLM Web UI,开始提问前,请依次如下 3 个步骤: 1. 选择语言模型、Embedding 模型及相关参数后点击"step.1: setting",并等待加载完成提示 2. 上传或选择已有文件作为本地知识文档输入后点击"step.2 loading",并等待加载完成提示 3. 输入要提交的问题后点击"step.3 asking" """]], elem_id="chat-box", show_label=False).style(height=600) with gr.Column(scale=1): with gr.Column(): llm_model = gr.Radio(llm_model_dict_list, label="llm model", value="chatglm-6b", interactive=True) LLM_HISTORY_LEN = gr.Slider(0, 10, value=3, step=1, label="LLM history len", interactive=True) embedding_model = gr.Radio(embedding_model_dict_list, label="embedding model", value="text2vec", interactive=True) VECTOR_SEARCH_TOP_K = gr.Slider(1, 20, value=6, step=1, label="vector search top k", interactive=True) load_model_button = gr.Button("step.1:setting") load_model_button.click(lambda *args: kb.init_cfg(args[0], args[1], args[2], args[3]), show_progress=True, api_name="init_cfg", inputs=[llm_model, embedding_model, LLM_HISTORY_LEN,VECTOR_SEARCH_TOP_K] ).then( get_model_status, chatbot, chatbot ) with gr.Column(): with gr.Tab("select"): selectFile = gr.Dropdown(file_list, label="content file", interactive=True, value=file_list[0] if len(file_list) > 0 else None) with gr.Tab("upload"): file = gr.File(label="content file", file_types=['.txt', '.md', '.docx'] ).style(height=100) # 将上传的文件保存到content文件夹下,并更新下拉框 file.upload(upload_file, inputs=file, outputs=selectFile) history = gr.State([]) vector_store = gr.State() load_button = gr.Button("step.2:loading") load_button.click(lambda fileName: kb.init_knowledge_vector_store( "content/" + fileName), show_progress=True, api_name="init_knowledge_vector_store", inputs=selectFile, outputs=vector_store ).then( get_file_status, chatbot, chatbot, show_progress=True, ) with gr.Row(): with gr.Column(scale=2): query = gr.Textbox(show_label=False, placeholder="Prompts", lines=1, value="用200字总结一下" ).style(container=False) with gr.Column(scale=1): generate_button = gr.Button("step.3:asking", elem_classes="importantButton") generate_button.click(get_answer, [query, vector_store, chatbot], [chatbot, history], api_name="get_knowledge_based_answer" ) demo.queue(concurrency_count=3).launch( server_name='0.0.0.0', share=False, inbrowser=False)