''' 该功能是为了将关键词加入到embedding模型中,以便于在embedding模型中进行关键词的embedding 该功能的实现是通过修改embedding模型的tokenizer来实现的 该功能仅仅对EMBEDDING_MODEL参数对应的的模型有效,输出后的模型保存在原本模型 感谢@CharlesJu1和@charlesyju的贡献提出了想法和最基础的PR 保存的模型的位置位于原本嵌入模型的目录下,模型的名称为原模型名称+Merge_Keywords_时间戳 ''' import sys sys.path.append("..") from datetime import datetime from configs import ( MODEL_PATH, EMBEDDING_MODEL, EMBEDDING_KEYWORD_FILE, ) import os import torch from safetensors.torch import save_model from sentence_transformers import SentenceTransformer def get_keyword_embedding(bert_model, tokenizer, key_words): tokenizer_output = tokenizer(key_words, return_tensors="pt", padding=True, truncation=True) # No need to manually convert to tensor as we've set return_tensors="pt" input_ids = tokenizer_output['input_ids'] # Remove the first and last token for each sequence in the batch input_ids = input_ids[:, 1:-1] keyword_embedding = bert_model.embeddings.word_embeddings(input_ids) keyword_embedding = torch.mean(keyword_embedding, 1) return keyword_embedding def add_keyword_to_model(model_name=EMBEDDING_MODEL, keyword_file: str = "", output_model_path: str = None): key_words = [] with open(keyword_file, "r") as f: for line in f: key_words.append(line.strip()) st_model = SentenceTransformer(model_name) key_words_len = len(key_words) word_embedding_model = st_model._first_module() bert_model = word_embedding_model.auto_model tokenizer = word_embedding_model.tokenizer key_words_embedding = get_keyword_embedding(bert_model, tokenizer, key_words) # key_words_embedding = st_model.encode(key_words) embedding_weight = bert_model.embeddings.word_embeddings.weight embedding_weight_len = len(embedding_weight) tokenizer.add_tokens(key_words) bert_model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=32) # key_words_embedding_tensor = torch.from_numpy(key_words_embedding) embedding_weight = bert_model.embeddings.word_embeddings.weight with torch.no_grad(): embedding_weight[embedding_weight_len:embedding_weight_len + key_words_len, :] = key_words_embedding if output_model_path: os.makedirs(output_model_path, exist_ok=True) word_embedding_model.save(output_model_path) safetensors_file = os.path.join(output_model_path, "model.safetensors") metadata = {'format': 'pt'} save_model(bert_model, safetensors_file, metadata) print("save model to {}".format(output_model_path)) def add_keyword_to_embedding_model(path: str = EMBEDDING_KEYWORD_FILE): keyword_file = os.path.join(path) model_name = MODEL_PATH["embed_model"][EMBEDDING_MODEL] model_parent_directory = os.path.dirname(model_name) current_time = datetime.now().strftime('%Y%m%d_%H%M%S') output_model_name = "{}_Merge_Keywords_{}".format(EMBEDDING_MODEL, current_time) output_model_path = os.path.join(model_parent_directory, output_model_name) add_keyword_to_model(model_name, keyword_file, output_model_path) if __name__ == '__main__': add_keyword_to_embedding_model(EMBEDDING_KEYWORD_FILE) # input_model_name = "" # output_model_path = "" # # 以下为加入关键字前后tokenizer的测试用例对比 # def print_token_ids(output, tokenizer, sentences): # for idx, ids in enumerate(output['input_ids']): # print(f'sentence={sentences[idx]}') # print(f'ids={ids}') # for id in ids: # decoded_id = tokenizer.decode(id) # print(f' {decoded_id}->{id}') # # sentences = [ # '数据科学与大数据技术', # 'Langchain-Chatchat' # ] # # st_no_keywords = SentenceTransformer(input_model_name) # tokenizer_without_keywords = st_no_keywords.tokenizer # print("===== tokenizer with no keywords added =====") # output = tokenizer_without_keywords(sentences) # print_token_ids(output, tokenizer_without_keywords, sentences) # print(f'-------- embedding with no keywords added -----') # embeddings = st_no_keywords.encode(sentences) # print(embeddings) # # print("--------------------------------------------") # print("--------------------------------------------") # print("--------------------------------------------") # # st_with_keywords = SentenceTransformer(output_model_path) # tokenizer_with_keywords = st_with_keywords.tokenizer # print("===== tokenizer with keyword added =====") # output = tokenizer_with_keywords(sentences) # print_token_ids(output, tokenizer_with_keywords, sentences) # # print(f'-------- embedding with keywords added -----') # embeddings = st_with_keywords.encode(sentences) # print(embeddings)