288 lines
11 KiB
Python
288 lines
11 KiB
Python
from __future__ import annotations
|
||
import json
|
||
import re
|
||
import warnings
|
||
from typing import Dict
|
||
from langchain.callbacks.manager import AsyncCallbackManagerForChainRun, CallbackManagerForChainRun
|
||
from langchain.chains.llm import LLMChain
|
||
from langchain.pydantic_v1 import Extra, root_validator
|
||
from langchain.schema import BasePromptTemplate
|
||
from langchain.schema.language_model import BaseLanguageModel
|
||
from typing import List, Any, Optional
|
||
from langchain.prompts import PromptTemplate
|
||
from server.chat.knowledge_base_chat import knowledge_base_chat
|
||
from configs import VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD, MAX_TOKENS
|
||
import asyncio
|
||
from server.agent import model_container
|
||
from pydantic import BaseModel, Field
|
||
|
||
async def search_knowledge_base_iter(database: str, query: str) -> str:
|
||
response = await knowledge_base_chat(query=query,
|
||
knowledge_base_name=database,
|
||
model_name=model_container.MODEL.model_name,
|
||
temperature=0.01,
|
||
history=[],
|
||
top_k=VECTOR_SEARCH_TOP_K,
|
||
max_tokens=MAX_TOKENS,
|
||
prompt_name="default",
|
||
score_threshold=SCORE_THRESHOLD,
|
||
stream=False)
|
||
|
||
contents = ""
|
||
async for data in response.body_iterator: # 这里的data是一个json字符串
|
||
data = json.loads(data)
|
||
contents += data["answer"]
|
||
docs = data["docs"]
|
||
return contents
|
||
|
||
|
||
async def search_knowledge_multiple(queries) -> List[str]:
|
||
# queries 应该是一个包含多个 (database, query) 元组的列表
|
||
tasks = [search_knowledge_base_iter(database, query) for database, query in queries]
|
||
results = await asyncio.gather(*tasks)
|
||
# 结合每个查询结果,并在每个查询结果前添加一个自定义的消息
|
||
combined_results = []
|
||
for (database, _), result in zip(queries, results):
|
||
message = f"\n查询到 {database} 知识库的相关信息:\n{result}"
|
||
combined_results.append(message)
|
||
|
||
return combined_results
|
||
|
||
|
||
def search_knowledge(queries) -> str:
|
||
responses = asyncio.run(search_knowledge_multiple(queries))
|
||
# 输出每个整合的查询结果
|
||
contents = ""
|
||
for response in responses:
|
||
contents += response + "\n\n"
|
||
return contents
|
||
|
||
|
||
_PROMPT_TEMPLATE = """
|
||
用户会提出一个需要你查询知识库的问题,你应该对问题进行理解和拆解,并在知识库中查询相关的内容。
|
||
|
||
对于每个知识库,你输出的内容应该是一个一行的字符串,这行字符串包含知识库名称和查询内容,中间用逗号隔开,不要有多余的文字和符号。你可以同时查询多个知识库,下面这个例子就是同时查询两个知识库的内容。
|
||
|
||
例子:
|
||
|
||
robotic,机器人男女比例是多少
|
||
bigdata,大数据的就业情况如何
|
||
|
||
|
||
这些数据库是你能访问的,冒号之前是他们的名字,冒号之后是他们的功能,你应该参考他们的功能来帮助你思考
|
||
|
||
|
||
{database_names}
|
||
|
||
你的回答格式应该按照下面的内容,请注意```text 等标记都必须输出,这是我用来提取答案的标记。
|
||
不要输出中文的逗号,不要输出引号。
|
||
|
||
Question: ${{用户的问题}}
|
||
|
||
```text
|
||
${{知识库名称,查询问题,不要带有任何除了,之外的符号,比如不要输出中文的逗号,不要输出引号}}
|
||
|
||
```output
|
||
数据库查询的结果
|
||
|
||
现在,我们开始作答
|
||
问题: {question}
|
||
"""
|
||
|
||
PROMPT = PromptTemplate(
|
||
input_variables=["question", "database_names"],
|
||
template=_PROMPT_TEMPLATE,
|
||
)
|
||
|
||
|
||
class LLMKnowledgeChain(LLMChain):
|
||
llm_chain: LLMChain
|
||
llm: Optional[BaseLanguageModel] = None
|
||
"""[Deprecated] LLM wrapper to use."""
|
||
prompt: BasePromptTemplate = PROMPT
|
||
"""[Deprecated] Prompt to use to translate to python if necessary."""
|
||
database_names: Dict[str, str] = None
|
||
input_key: str = "question" #: :meta private:
|
||
output_key: str = "answer" #: :meta private:
|
||
|
||
class Config:
|
||
"""Configuration for this pydantic object."""
|
||
|
||
extra = Extra.forbid
|
||
arbitrary_types_allowed = True
|
||
|
||
@root_validator(pre=True)
|
||
def raise_deprecation(cls, values: Dict) -> Dict:
|
||
if "llm" in values:
|
||
warnings.warn(
|
||
"Directly instantiating an LLMKnowledgeChain with an llm is deprecated. "
|
||
"Please instantiate with llm_chain argument or using the from_llm "
|
||
"class method."
|
||
)
|
||
if "llm_chain" not in values and values["llm"] is not None:
|
||
prompt = values.get("prompt", PROMPT)
|
||
values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt)
|
||
return values
|
||
|
||
@property
|
||
def input_keys(self) -> List[str]:
|
||
"""Expect input key.
|
||
|
||
:meta private:
|
||
"""
|
||
return [self.input_key]
|
||
|
||
@property
|
||
def output_keys(self) -> List[str]:
|
||
"""Expect output key.
|
||
|
||
:meta private:
|
||
"""
|
||
return [self.output_key]
|
||
|
||
def _evaluate_expression(self, queries) -> str:
|
||
try:
|
||
output = search_knowledge(queries)
|
||
except Exception as e:
|
||
output = "输入的信息有误或不存在知识库,错误信息如下:\n"
|
||
return output + str(e)
|
||
return output
|
||
|
||
def _process_llm_result(
|
||
self,
|
||
llm_output: str,
|
||
run_manager: CallbackManagerForChainRun
|
||
) -> Dict[str, str]:
|
||
|
||
run_manager.on_text(llm_output, color="green", verbose=self.verbose)
|
||
|
||
llm_output = llm_output.strip()
|
||
# text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL)
|
||
text_match = re.search(r"```text(.*)", llm_output, re.DOTALL)
|
||
if text_match:
|
||
expression = text_match.group(1).strip()
|
||
cleaned_input_str = (expression.replace("\"", "").replace("“", "").
|
||
replace("”", "").replace("```", "").strip())
|
||
lines = cleaned_input_str.split("\n")
|
||
# 使用逗号分割每一行,然后形成一个(数据库,查询)元组的列表
|
||
|
||
try:
|
||
queries = [(line.split(",")[0].strip(), line.split(",")[1].strip()) for line in lines]
|
||
except:
|
||
queries = [(line.split(",")[0].strip(), line.split(",")[1].strip()) for line in lines]
|
||
run_manager.on_text("知识库查询询内容:\n\n" + str(queries) + " \n\n", color="blue", verbose=self.verbose)
|
||
output = self._evaluate_expression(queries)
|
||
run_manager.on_text("\nAnswer: ", verbose=self.verbose)
|
||
run_manager.on_text(output, color="yellow", verbose=self.verbose)
|
||
answer = "Answer: " + output
|
||
elif llm_output.startswith("Answer:"):
|
||
answer = llm_output
|
||
elif "Answer:" in llm_output:
|
||
answer = llm_output.split("Answer:")[-1]
|
||
else:
|
||
return {self.output_key: f"输入的格式不对:\n {llm_output}"}
|
||
return {self.output_key: answer}
|
||
|
||
async def _aprocess_llm_result(
|
||
self,
|
||
llm_output: str,
|
||
run_manager: AsyncCallbackManagerForChainRun,
|
||
) -> Dict[str, str]:
|
||
await run_manager.on_text(llm_output, color="green", verbose=self.verbose)
|
||
llm_output = llm_output.strip()
|
||
text_match = re.search(r"```text(.*)", llm_output, re.DOTALL)
|
||
if text_match:
|
||
|
||
expression = text_match.group(1).strip()
|
||
cleaned_input_str = (
|
||
expression.replace("\"", "").replace("“", "").replace("”", "").replace("```", "").strip())
|
||
lines = cleaned_input_str.split("\n")
|
||
try:
|
||
queries = [(line.split(",")[0].strip(), line.split(",")[1].strip()) for line in lines]
|
||
except:
|
||
queries = [(line.split(",")[0].strip(), line.split(",")[1].strip()) for line in lines]
|
||
await run_manager.on_text("知识库查询询内容:\n\n" + str(queries) + " \n\n", color="blue",
|
||
verbose=self.verbose)
|
||
|
||
output = self._evaluate_expression(queries)
|
||
await run_manager.on_text("\nAnswer: ", verbose=self.verbose)
|
||
await run_manager.on_text(output, color="yellow", verbose=self.verbose)
|
||
answer = "Answer: " + output
|
||
elif llm_output.startswith("Answer:"):
|
||
answer = llm_output
|
||
elif "Answer:" in llm_output:
|
||
answer = "Answer: " + llm_output.split("Answer:")[-1]
|
||
else:
|
||
raise ValueError(f"unknown format from LLM: {llm_output}")
|
||
return {self.output_key: answer}
|
||
|
||
def _call(
|
||
self,
|
||
inputs: Dict[str, str],
|
||
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||
) -> Dict[str, str]:
|
||
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
||
_run_manager.on_text(inputs[self.input_key])
|
||
self.database_names = model_container.DATABASE
|
||
data_formatted_str = ',\n'.join([f' "{k}":"{v}"' for k, v in self.database_names.items()])
|
||
llm_output = self.llm_chain.predict(
|
||
database_names=data_formatted_str,
|
||
question=inputs[self.input_key],
|
||
stop=["```output"],
|
||
callbacks=_run_manager.get_child(),
|
||
)
|
||
return self._process_llm_result(llm_output, _run_manager)
|
||
|
||
async def _acall(
|
||
self,
|
||
inputs: Dict[str, str],
|
||
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
|
||
) -> Dict[str, str]:
|
||
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
|
||
await _run_manager.on_text(inputs[self.input_key])
|
||
self.database_names = model_container.DATABASE
|
||
data_formatted_str = ',\n'.join([f' "{k}":"{v}"' for k, v in self.database_names.items()])
|
||
llm_output = await self.llm_chain.apredict(
|
||
database_names=data_formatted_str,
|
||
question=inputs[self.input_key],
|
||
stop=["```output"],
|
||
callbacks=_run_manager.get_child(),
|
||
)
|
||
return await self._aprocess_llm_result(llm_output, inputs[self.input_key], _run_manager)
|
||
|
||
@property
|
||
def _chain_type(self) -> str:
|
||
return "llm_knowledge_chain"
|
||
|
||
@classmethod
|
||
def from_llm(
|
||
cls,
|
||
llm: BaseLanguageModel,
|
||
prompt: BasePromptTemplate = PROMPT,
|
||
**kwargs: Any,
|
||
) -> LLMKnowledgeChain:
|
||
llm_chain = LLMChain(llm=llm, prompt=prompt)
|
||
return cls(llm_chain=llm_chain, **kwargs)
|
||
|
||
|
||
def search_knowledgebase_complex(query: str):
|
||
model = model_container.MODEL
|
||
llm_knowledge = LLMKnowledgeChain.from_llm(model, verbose=True, prompt=PROMPT)
|
||
ans = llm_knowledge.run(query)
|
||
return ans
|
||
|
||
class KnowledgeSearchInput(BaseModel):
|
||
location: str = Field(description="The query to be searched")
|
||
|
||
if __name__ == "__main__":
|
||
result = search_knowledgebase_complex("机器人和大数据在代码教学上有什么区别")
|
||
print(result)
|
||
|
||
# 这是一个正常的切割
|
||
# queries = [
|
||
# ("bigdata", "大数据专业的男女比例"),
|
||
# ("robotic", "机器人专业的优势")
|
||
# ]
|
||
# result = search_knowledge(queries)
|
||
# print(result)
|