287 lines
12 KiB
Python
287 lines
12 KiB
Python
import torch.cuda
|
||
import torch.backends
|
||
import os
|
||
import logging
|
||
import uuid
|
||
|
||
LOG_FORMAT = "%(levelname) -5s %(asctime)s" "-1d: %(message)s"
|
||
logger = logging.getLogger()
|
||
logger.setLevel(logging.INFO)
|
||
logging.basicConfig(format=LOG_FORMAT)
|
||
|
||
# 在以下字典中修改属性值,以指定本地embedding模型存储位置
|
||
# 如将 "text2vec": "GanymedeNil/text2vec-large-chinese" 修改为 "text2vec": "User/Downloads/text2vec-large-chinese"
|
||
# 此处请写绝对路径
|
||
embedding_model_dict = {
|
||
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
|
||
"ernie-base": "nghuyong/ernie-3.0-base-zh",
|
||
"text2vec-base": "shibing624/text2vec-base-chinese",
|
||
"text2vec": "GanymedeNil/text2vec-large-chinese",
|
||
"m3e-small": "moka-ai/m3e-small",
|
||
"m3e-base": "moka-ai/m3e-base",
|
||
}
|
||
|
||
# Embedding model name
|
||
EMBEDDING_MODEL = "text2vec"
|
||
|
||
# Embedding running device
|
||
EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||
|
||
# supported LLM models
|
||
# llm_model_dict 处理了loader的一些预设行为,如加载位置,模型名称,模型处理器实例
|
||
# 在以下字典中修改属性值,以指定本地 LLM 模型存储位置
|
||
# 如将 "chatglm-6b" 的 "local_model_path" 由 None 修改为 "User/Downloads/chatglm-6b"
|
||
# 此处请写绝对路径
|
||
llm_model_dict = {
|
||
"chatglm-6b-int4-qe": {
|
||
"name": "chatglm-6b-int4-qe",
|
||
"pretrained_model_name": "THUDM/chatglm-6b-int4-qe",
|
||
"local_model_path": None,
|
||
"provides": "ChatGLMLLMChain"
|
||
},
|
||
"chatglm-6b-int4": {
|
||
"name": "chatglm-6b-int4",
|
||
"pretrained_model_name": "THUDM/chatglm-6b-int4",
|
||
"local_model_path": None,
|
||
"provides": "ChatGLMLLMChain"
|
||
},
|
||
"chatglm-6b-int8": {
|
||
"name": "chatglm-6b-int8",
|
||
"pretrained_model_name": "THUDM/chatglm-6b-int8",
|
||
"local_model_path": None,
|
||
"provides": "ChatGLMLLMChain"
|
||
},
|
||
"chatglm-6b": {
|
||
"name": "chatglm-6b",
|
||
"pretrained_model_name": "THUDM/chatglm-6b",
|
||
"local_model_path": None,
|
||
"provides": "ChatGLMLLMChain"
|
||
},
|
||
"chatglm2-6b": {
|
||
"name": "chatglm2-6b",
|
||
"pretrained_model_name": "THUDM/chatglm2-6b",
|
||
"local_model_path": None,
|
||
"provides": "ChatGLMLLMChain"
|
||
},
|
||
"chatglm2-6b-int4": {
|
||
"name": "chatglm2-6b-int4",
|
||
"pretrained_model_name": "THUDM/chatglm2-6b-int4",
|
||
"local_model_path": None,
|
||
"provides": "ChatGLMLLMChain"
|
||
},
|
||
"chatglm2-6b-int8": {
|
||
"name": "chatglm2-6b-int8",
|
||
"pretrained_model_name": "THUDM/chatglm2-6b-int8",
|
||
"local_model_path": None,
|
||
"provides": "ChatGLMLLMChain"
|
||
},
|
||
"chatyuan": {
|
||
"name": "chatyuan",
|
||
"pretrained_model_name": "ClueAI/ChatYuan-large-v2",
|
||
"local_model_path": None,
|
||
"provides": "MOSSLLMChain"
|
||
},
|
||
"moss": {
|
||
"name": "moss",
|
||
"pretrained_model_name": "fnlp/moss-moon-003-sft",
|
||
"local_model_path": None,
|
||
"provides": "MOSSLLMChain"
|
||
},
|
||
"moss-int4": {
|
||
"name": "moss",
|
||
"pretrained_model_name": "fnlp/moss-moon-003-sft-int4",
|
||
"local_model_path": None,
|
||
"provides": "MOSSLLM"
|
||
},
|
||
"vicuna-13b-hf": {
|
||
"name": "vicuna-13b-hf",
|
||
"pretrained_model_name": "vicuna-13b-hf",
|
||
"local_model_path": None,
|
||
"provides": "LLamaLLMChain"
|
||
},
|
||
"vicuna-7b-hf": {
|
||
"name": "vicuna-13b-hf",
|
||
"pretrained_model_name": "vicuna-13b-hf",
|
||
"local_model_path": None,
|
||
"provides": "LLamaLLMChain"
|
||
},
|
||
# 直接调用返回requests.exceptions.ConnectionError错误,需要通过huggingface_hub包里的snapshot_download函数
|
||
# 下载模型,如果snapshot_download还是返回网络错误,多试几次,一般是可以的,
|
||
# 如果仍然不行,则应该是网络加了防火墙(在服务器上这种情况比较常见),基本只能从别的设备上下载,
|
||
# 然后转移到目标设备了.
|
||
"bloomz-7b1": {
|
||
"name": "bloomz-7b1",
|
||
"pretrained_model_name": "bigscience/bloomz-7b1",
|
||
"local_model_path": None,
|
||
"provides": "MOSSLLMChain"
|
||
|
||
},
|
||
# 实测加载bigscience/bloom-3b需要170秒左右,暂不清楚为什么这么慢
|
||
# 应与它要加载专有token有关
|
||
"bloom-3b": {
|
||
"name": "bloom-3b",
|
||
"pretrained_model_name": "bigscience/bloom-3b",
|
||
"local_model_path": None,
|
||
"provides": "MOSSLLMChain"
|
||
|
||
},
|
||
"baichuan-7b": {
|
||
"name": "baichuan-7b",
|
||
"pretrained_model_name": "baichuan-inc/baichuan-7B",
|
||
"local_model_path": None,
|
||
"provides": "MOSSLLMChain"
|
||
},
|
||
# llama-cpp模型的兼容性问题参考https://github.com/abetlen/llama-cpp-python/issues/204
|
||
"ggml-vicuna-13b-1.1-q5": {
|
||
"name": "ggml-vicuna-13b-1.1-q5",
|
||
"pretrained_model_name": "lmsys/vicuna-13b-delta-v1.1",
|
||
# 这里需要下载好模型的路径,如果下载模型是默认路径则它会下载到用户工作区的
|
||
# /.cache/huggingface/hub/models--vicuna--ggml-vicuna-13b-1.1/
|
||
# 还有就是由于本项目加载模型的方式设置的比较严格,下载完成后仍需手动修改模型的文件名
|
||
# 将其设置为与Huggface Hub一致的文件名
|
||
# 此外不同时期的ggml格式并不兼容,因此不同时期的ggml需要安装不同的llama-cpp-python库,且实测pip install 不好使
|
||
# 需要手动从https://github.com/abetlen/llama-cpp-python/releases/tag/下载对应的wheel安装
|
||
# 实测v0.1.63与本模型的vicuna/ggml-vicuna-13b-1.1/ggml-vic13b-q5_1.bin可以兼容
|
||
"local_model_path": f'''{"/".join(os.path.abspath(__file__).split("/")[:3])}/.cache/huggingface/hub/models--vicuna--ggml-vicuna-13b-1.1/blobs/''',
|
||
"provides": "LLamaLLMChain"
|
||
},
|
||
|
||
# 通过 fastchat 调用的模型请参考如下格式
|
||
"fastchat-chatglm-6b": {
|
||
"name": "chatglm-6b", # "name"修改为fastchat服务中的"model_name"
|
||
"pretrained_model_name": "chatglm-6b",
|
||
"local_model_path": None,
|
||
"provides": "FastChatOpenAILLMChain", # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLMChain"
|
||
"api_base_url": "http://localhost:8000/v1", # "name"修改为fastchat服务中的"api_base_url"
|
||
"api_key": "EMPTY"
|
||
},
|
||
# 通过 fastchat 调用的模型请参考如下格式
|
||
"fastchat-chatglm-6b-int4": {
|
||
"name": "chatglm-6b-int4", # "name"修改为fastchat服务中的"model_name"
|
||
"pretrained_model_name": "chatglm-6b-int4",
|
||
"local_model_path": None,
|
||
"provides": "FastChatOpenAILLMChain", # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLMChain"
|
||
"api_base_url": "http://localhost:8001/v1", # "name"修改为fastchat服务中的"api_base_url"
|
||
"api_key": "EMPTY"
|
||
},
|
||
"fastchat-chatglm2-6b": {
|
||
"name": "chatglm2-6b", # "name"修改为fastchat服务中的"model_name"
|
||
"pretrained_model_name": "chatglm2-6b",
|
||
"local_model_path": None,
|
||
"provides": "FastChatOpenAILLMChain", # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLMChain"
|
||
"api_base_url": "http://localhost:8000/v1" # "name"修改为fastchat服务中的"api_base_url"
|
||
},
|
||
|
||
# 通过 fastchat 调用的模型请参考如下格式
|
||
"fastchat-vicuna-13b-hf": {
|
||
"name": "vicuna-13b-hf", # "name"修改为fastchat服务中的"model_name"
|
||
"pretrained_model_name": "vicuna-13b-hf",
|
||
"local_model_path": None,
|
||
"provides": "FastChatOpenAILLMChain", # 使用fastchat api时,需保证"provides"为"FastChatOpenAILLMChain"
|
||
"api_base_url": "http://localhost:8000/v1", # "name"修改为fastchat服务中的"api_base_url"
|
||
"api_key": "EMPTY"
|
||
},
|
||
# 调用chatgpt时如果报出: urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='api.openai.com', port=443):
|
||
# Max retries exceeded with url: /v1/chat/completions
|
||
# 则需要将urllib3版本修改为1.25.11
|
||
# 如果依然报urllib3.exceptions.MaxRetryError: HTTPSConnectionPool,则将https改为http
|
||
# 参考https://zhuanlan.zhihu.com/p/350015032
|
||
|
||
# 如果报出:raise NewConnectionError(
|
||
# urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPSConnection object at 0x000001FE4BDB85E0>:
|
||
# Failed to establish a new connection: [WinError 10060]
|
||
# 则是因为内地和香港的IP都被OPENAI封了,需要切换为日本、新加坡等地
|
||
"openai-chatgpt-3.5": {
|
||
"name": "gpt-3.5-turbo",
|
||
"pretrained_model_name": "gpt-3.5-turbo",
|
||
"provides": "FastChatOpenAILLMChain",
|
||
"local_model_path": None,
|
||
"api_base_url": "https://api.openapi.com/v1",
|
||
"api_key": ""
|
||
},
|
||
|
||
}
|
||
|
||
# LLM 名称
|
||
LLM_MODEL = "chatglm-6b"
|
||
# 量化加载8bit 模型
|
||
LOAD_IN_8BIT = False
|
||
# Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.
|
||
BF16 = False
|
||
# 本地lora存放的位置
|
||
LORA_DIR = "loras/"
|
||
|
||
# LLM lora path,默认为空,如果有请直接指定文件夹路径
|
||
LLM_LORA_PATH = ""
|
||
USE_LORA = True if LLM_LORA_PATH else False
|
||
|
||
# LLM streaming reponse
|
||
STREAMING = True
|
||
|
||
# Use p-tuning-v2 PrefixEncoder
|
||
USE_PTUNING_V2 = False
|
||
PTUNING_DIR='./ptuning-v2'
|
||
# LLM running device
|
||
LLM_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||
|
||
# 知识库默认存储路径
|
||
KB_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "knowledge_base")
|
||
|
||
# 基于上下文的prompt模版,请务必保留"{question}"和"{context}"
|
||
PROMPT_TEMPLATE = """已知信息:
|
||
{context}
|
||
|
||
根据上述已知信息,简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。 问题是:{question}"""
|
||
|
||
# 缓存知识库数量,如果是ChatGLM2,ChatGLM2-int4,ChatGLM2-int8模型若检索效果不好可以调成’10’
|
||
CACHED_VS_NUM = 1
|
||
|
||
# 文本分句长度
|
||
SENTENCE_SIZE = 100
|
||
|
||
# 匹配后单段上下文长度
|
||
CHUNK_SIZE = 250
|
||
|
||
# 传入LLM的历史记录长度
|
||
LLM_HISTORY_LEN = 3
|
||
|
||
# 知识库检索时返回的匹配内容条数
|
||
VECTOR_SEARCH_TOP_K = 5
|
||
|
||
# 知识检索内容相关度 Score, 数值范围约为0-1100,如果为0,则不生效,建议设置为500左右,经测试设置为小于500时,匹配结果更精准
|
||
VECTOR_SEARCH_SCORE_THRESHOLD = 500
|
||
|
||
NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data")
|
||
|
||
FLAG_USER_NAME = uuid.uuid4().hex
|
||
|
||
logger.info(f"""
|
||
loading model config
|
||
llm device: {LLM_DEVICE}
|
||
embedding device: {EMBEDDING_DEVICE}
|
||
dir: {os.path.dirname(os.path.dirname(__file__))}
|
||
flagging username: {FLAG_USER_NAME}
|
||
""")
|
||
|
||
# 是否开启跨域,默认为False,如果需要开启,请设置为True
|
||
# is open cross domain
|
||
OPEN_CROSS_DOMAIN = False
|
||
|
||
# Bing 搜索必备变量
|
||
# 使用 Bing 搜索需要使用 Bing Subscription Key,需要在azure port中申请试用bing search
|
||
# 具体申请方式请见
|
||
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/create-bing-search-service-resource
|
||
# 使用python创建bing api 搜索实例详见:
|
||
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/quickstarts/rest/python
|
||
BING_SEARCH_URL = "https://api.bing.microsoft.com/v7.0/search"
|
||
# 注意不是bing Webmaster Tools的api key,
|
||
|
||
# 此外,如果是在服务器上,报Failed to establish a new connection: [Errno 110] Connection timed out
|
||
# 是因为服务器加了防火墙,需要联系管理员加白名单,如果公司的服务器的话,就别想了GG
|
||
BING_SUBSCRIPTION_KEY = ""
|
||
|
||
# 是否开启中文标题加强,以及标题增强的相关配置
|
||
# 通过增加标题判断,判断哪些文本为标题,并在metadata中进行标记;
|
||
# 然后将文本与往上一级的标题进行拼合,实现文本信息的增强。
|
||
ZH_TITLE_ENHANCE = False
|