675 lines
26 KiB
Markdown
675 lines
26 KiB
Markdown
# chatchat加载ptuning指南
|
||
|
||
P-tuning虽然是一种peft方法,但并不能于huggingface的peft python包兼容,而fastchat在多处以字符串匹配的方式进行硬编码加载模型,因此导致fastchat和chatchat不能兼容p-tuning,经langchain-chatchat开发组多次尝试,给出如下指南进行p-tuning加载。
|
||
|
||
# 1. peft文件夹修改
|
||
|
||
1. 将config.json文件修改为adapter_config.json;
|
||
2. 保证文件夹包含pytorch_model.bin文件;
|
||
3. 修改文件夹名称,保证文件夹包含'peft'一词;
|
||
4. 在adapter_config.json文件中增加如下字段:
|
||
|
||
```json
|
||
"base_model_name_or_path": "/root/model/chatglm2-6b/"
|
||
"task_type": "CAUSAL_LM",
|
||
"peft_type": "PREFIX_TUNING",
|
||
"inference_mode": true,
|
||
"revision": "main",
|
||
"num_virtual_tokens": 16
|
||
```
|
||
|
||
**其中,"base_model_name_or_path"为基础模型的存在位置**;
|
||
5. 将文件夹移入项目文件夹中,如Langchain-Chatchat项目文件夹目录下;
|
||
|
||
# 2. fastchat包代码修改
|
||
|
||
## 2.1 fastchat.model.model_adapter文件修改
|
||
|
||
1. 将fastchat.model.model_adapter.py文件的load_model函数修改为:
|
||
|
||
```python
|
||
def load_model(
|
||
model_path: str,
|
||
device: str = "cuda",
|
||
num_gpus: int = 1,
|
||
max_gpu_memory: Optional[str] = None,
|
||
dtype: Optional[torch.dtype] = None,
|
||
load_8bit: bool = False,
|
||
cpu_offloading: bool = False,
|
||
gptq_config: Optional[GptqConfig] = None,
|
||
awq_config: Optional[AWQConfig] = None,
|
||
revision: str = "main",
|
||
debug: bool = False,
|
||
load_kwargs = {}
|
||
):
|
||
"""Load a model from Hugging Face."""
|
||
# get model adapter
|
||
adapter = get_model_adapter(model_path)
|
||
kwargs = load_kwargs
|
||
# Handle device mapping
|
||
cpu_offloading = raise_warning_for_incompatible_cpu_offloading_configuration(
|
||
device, load_8bit, cpu_offloading
|
||
)
|
||
if device == "cpu":
|
||
kwargs["torch_dtype"]= torch.float32
|
||
if CPU_ISA in ["avx512_bf16", "amx"]:
|
||
try:
|
||
import intel_extension_for_pytorch as ipex
|
||
|
||
kwargs ["torch_dtype"]= torch.bfloat16
|
||
except ImportError:
|
||
warnings.warn(
|
||
"Intel Extension for PyTorch is not installed, it can be installed to accelerate cpu inference"
|
||
)
|
||
elif device == "cuda":
|
||
kwargs["torch_dtype"] = torch.float16
|
||
if num_gpus != 1:
|
||
kwargs["device_map"] = "auto"
|
||
if max_gpu_memory is None:
|
||
kwargs[
|
||
"device_map"
|
||
] = "sequential" # This is important for not the same VRAM sizes
|
||
available_gpu_memory = get_gpu_memory(num_gpus)
|
||
kwargs["max_memory"] = {
|
||
i: str(int(available_gpu_memory[i] * 0.85)) + "GiB"
|
||
for i in range(num_gpus)
|
||
}
|
||
else:
|
||
kwargs["max_memory"] = {i: max_gpu_memory for i in range(num_gpus)}
|
||
elif device == "mps":
|
||
kwargs["torch_dtype"] = torch.float16
|
||
# Avoid bugs in mps backend by not using in-place operations.
|
||
replace_llama_attn_with_non_inplace_operations()
|
||
elif device == "xpu":
|
||
kwargs["torch_dtype"] = torch.bfloat16
|
||
# Try to load ipex, while it looks unused, it links into torch for xpu support
|
||
try:
|
||
import intel_extension_for_pytorch as ipex
|
||
except ImportError:
|
||
warnings.warn(
|
||
"Intel Extension for PyTorch is not installed, but is required for xpu inference."
|
||
)
|
||
elif device == "npu":
|
||
kwargs["torch_dtype"]= torch.float16
|
||
# Try to load ipex, while it looks unused, it links into torch for xpu support
|
||
try:
|
||
import torch_npu
|
||
except ImportError:
|
||
warnings.warn("Ascend Extension for PyTorch is not installed.")
|
||
else:
|
||
raise ValueError(f"Invalid device: {device}")
|
||
|
||
if cpu_offloading:
|
||
# raises an error on incompatible platforms
|
||
from transformers import BitsAndBytesConfig
|
||
|
||
if "max_memory" in kwargs:
|
||
kwargs["max_memory"]["cpu"] = (
|
||
str(math.floor(psutil.virtual_memory().available / 2**20)) + "Mib"
|
||
)
|
||
kwargs["quantization_config"] = BitsAndBytesConfig(
|
||
load_in_8bit_fp32_cpu_offload=cpu_offloading
|
||
)
|
||
kwargs["load_in_8bit"] = load_8bit
|
||
elif load_8bit:
|
||
if num_gpus != 1:
|
||
warnings.warn(
|
||
"8-bit quantization is not supported for multi-gpu inference."
|
||
)
|
||
else:
|
||
model, tokenizer = adapter.load_compress_model(
|
||
model_path=model_path,
|
||
device=device,
|
||
torch_dtype=kwargs["torch_dtype"],
|
||
revision=revision,
|
||
)
|
||
if debug:
|
||
print(model)
|
||
return model, tokenizer
|
||
elif awq_config and awq_config.wbits < 16:
|
||
assert (
|
||
awq_config.wbits == 4
|
||
), "Currently we only support 4-bit inference for AWQ."
|
||
model, tokenizer = load_awq_quantized(model_path, awq_config, device)
|
||
if num_gpus != 1:
|
||
device_map = accelerate.infer_auto_device_map(
|
||
model,
|
||
max_memory=kwargs["max_memory"],
|
||
no_split_module_classes=[
|
||
"OPTDecoderLayer",
|
||
"LlamaDecoderLayer",
|
||
"BloomBlock",
|
||
"MPTBlock",
|
||
"DecoderLayer",
|
||
],
|
||
)
|
||
model = accelerate.dispatch_model(
|
||
model, device_map=device_map, offload_buffers=True
|
||
)
|
||
else:
|
||
model.to(device)
|
||
return model, tokenizer
|
||
elif gptq_config and gptq_config.wbits < 16:
|
||
model, tokenizer = load_gptq_quantized(model_path, gptq_config)
|
||
if num_gpus != 1:
|
||
device_map = accelerate.infer_auto_device_map(
|
||
model,
|
||
max_memory=kwargs["max_memory"],
|
||
no_split_module_classes=["LlamaDecoderLayer"],
|
||
)
|
||
model = accelerate.dispatch_model(
|
||
model, device_map=device_map, offload_buffers=True
|
||
)
|
||
else:
|
||
model.to(device)
|
||
return model, tokenizer
|
||
kwargs["revision"] = revision
|
||
|
||
if dtype is not None: # Overwrite dtype if it is provided in the arguments.
|
||
kwargs["torch_dtype"] = dtype
|
||
|
||
# Load model
|
||
model, tokenizer = adapter.load_model(model_path, kwargs)
|
||
|
||
if (
|
||
device == "cpu"
|
||
and kwargs["torch_dtype"] is torch.bfloat16
|
||
and CPU_ISA is not None
|
||
):
|
||
model = ipex.optimize(model, dtype=kwargs["torch_dtype"])
|
||
|
||
if (device == "cuda" and num_gpus == 1 and not cpu_offloading) or device in (
|
||
"mps",
|
||
"xpu",
|
||
"npu",
|
||
):
|
||
model.to(device)
|
||
|
||
if device == "xpu":
|
||
model = torch.xpu.optimize(model, dtype=kwargs["torch_dtype"], inplace=True)
|
||
|
||
if debug:
|
||
print(model)
|
||
|
||
return model, tokenizer
|
||
```
|
||
2. 将fastchat.model.model_adapter.py的函数修改为:
|
||
|
||
```python
|
||
def get_generate_stream_function(model: torch.nn.Module, model_path: str):
|
||
"""Get the generate_stream function for inference."""
|
||
from fastchat.serve.inference import generate_stream
|
||
|
||
model_type = str(type(model)).lower()
|
||
|
||
is_chatglm = "chatglm" in model_type
|
||
is_falcon = "rwforcausallm" in model_type
|
||
is_codet5p = "codet5p" in model_type
|
||
is_peft = "peft" in model_type
|
||
|
||
if is_chatglm:
|
||
return generate_stream_chatglm
|
||
elif is_falcon:
|
||
return generate_stream_falcon
|
||
elif is_codet5p:
|
||
return generate_stream_codet5p
|
||
elif peft_share_base_weights and is_peft:
|
||
# Return a curried stream function that loads the right adapter
|
||
# according to the model_name available in this context. This ensures
|
||
# the right weights are available.
|
||
@torch.inference_mode()
|
||
def generate_stream_peft(
|
||
model,
|
||
tokenizer,
|
||
params: Dict,
|
||
device: str,
|
||
context_len: int,
|
||
stream_interval: int = 2,
|
||
judge_sent_end: bool = False,
|
||
):
|
||
|
||
model.set_adapter(model_path)
|
||
if "chatglm" in str(type(model.base_model)).lower():
|
||
model.disable_adapter()
|
||
prefix_state_dict = torch.load(os.path.join(model_path, "pytorch_model.bin"))
|
||
new_prefix_state_dict = {}
|
||
|
||
for k, v in prefix_state_dict.items():
|
||
if k.startswith("transformer.prefix_encoder."):
|
||
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
|
||
elif k.startswith("transformer.prompt_encoder."):
|
||
new_prefix_state_dict[k[len("transformer.prompt_encoder."):]] = v
|
||
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
|
||
for x in generate_stream_chatglm(
|
||
model,
|
||
tokenizer,
|
||
params,
|
||
device,
|
||
context_len,
|
||
stream_interval,
|
||
judge_sent_end,
|
||
):
|
||
yield x
|
||
elif "rwforcausallm" in str(type(model.base_model)).lower():
|
||
|
||
for x in generate_stream_falcon(
|
||
model,
|
||
tokenizer,
|
||
params,
|
||
device,
|
||
context_len,
|
||
stream_interval,
|
||
judge_sent_end,
|
||
):
|
||
yield x
|
||
elif "codet5p" in str(type(model.base_model)).lower():
|
||
|
||
for x in generate_stream_codet5p(
|
||
model,
|
||
tokenizer,
|
||
params,
|
||
device,
|
||
context_len,
|
||
stream_interval,
|
||
judge_sent_end,
|
||
):
|
||
yield x
|
||
else:
|
||
|
||
for x in generate_stream(
|
||
model,
|
||
tokenizer,
|
||
params,
|
||
device,
|
||
context_len,
|
||
stream_interval,
|
||
judge_sent_end,
|
||
):
|
||
yield x
|
||
|
||
return generate_stream_peft
|
||
else:
|
||
return generate_stream
|
||
```
|
||
3. 将fastchat.model.model_adapter.py的PeftModelAdapter类的load_model方法修改为:
|
||
|
||
```python
|
||
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
|
||
"""Loads the base model then the (peft) adapter weights"""
|
||
from peft import PeftConfig, PeftModel
|
||
|
||
config = PeftConfig.from_pretrained(model_path)
|
||
base_model_path = config.base_model_name_or_path
|
||
if "peft" in base_model_path:
|
||
raise ValueError(
|
||
f"PeftModelAdapter cannot load a base model with 'peft' in the name: {config.base_model_name_or_path}"
|
||
)
|
||
|
||
# Basic proof of concept for loading peft adapters that share the base
|
||
# weights. This is pretty messy because Peft re-writes the underlying
|
||
# base model and internally stores a map of adapter layers.
|
||
# So, to make this work we:
|
||
# 1. Cache the first peft model loaded for a given base models.
|
||
# 2. Call `load_model` for any follow on Peft models.
|
||
# 3. Make sure we load the adapters by the model_path. Why? This is
|
||
# what's accessible during inference time.
|
||
# 4. In get_generate_stream_function, make sure we load the right
|
||
# adapter before doing inference. This *should* be safe when calls
|
||
# are blocked the same semaphore.
|
||
if peft_share_base_weights:
|
||
if base_model_path in peft_model_cache:
|
||
model, tokenizer = peft_model_cache[base_model_path]
|
||
# Super important: make sure we use model_path as the
|
||
# `adapter_name`.
|
||
model.load_adapter(model_path, adapter_name=model_path)
|
||
else:
|
||
base_adapter = get_model_adapter(base_model_path)
|
||
base_model, tokenizer = base_adapter.load_model(
|
||
base_model_path, from_pretrained_kwargs
|
||
)
|
||
# Super important: make sure we use model_path as the
|
||
# `adapter_name`.
|
||
from peft import get_peft_model
|
||
model = get_peft_model(base_model,config,adapter_name=model_path)
|
||
peft_model_cache[base_model_path] = (model, tokenizer)
|
||
return model, tokenizer
|
||
|
||
# In the normal case, load up the base model weights again.
|
||
base_adapter = get_model_adapter(base_model_path)
|
||
base_model, tokenizer = base_adapter.load_model(
|
||
base_model_path, from_pretrained_kwargs
|
||
)
|
||
from peft import get_peft_model
|
||
model = get_peft_model(base_model,config,adapter_name=model_path)
|
||
return model, tokenizer
|
||
|
||
```
|
||
4. 将fastchat.model.model_adapter.py的ChatglmAdapter类的load_model方法修改为:
|
||
|
||
```python
|
||
def load_model(self, model_path: str, from_pretrained_kwargs: dict):
|
||
revision = from_pretrained_kwargs.get("revision", "main")
|
||
tokenizer = AutoTokenizer.from_pretrained(
|
||
model_path, trust_remote_code=True, revision=revision
|
||
)
|
||
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True,**from_pretrained_kwargs)
|
||
model = AutoModel.from_pretrained(
|
||
model_path, trust_remote_code=True, config=config
|
||
)
|
||
return model, tokenizer
|
||
```
|
||
|
||
## 2.2 fastchat.serve.model_worker文件修改
|
||
|
||
1. 将fastchat.serve.model_worker文件的ModelWorker的__init__方法修改如下:
|
||
|
||
```python
|
||
class ModelWorker(BaseModelWorker):
|
||
def __init__(
|
||
self,
|
||
controller_addr: str,
|
||
worker_addr: str,
|
||
worker_id: str,
|
||
model_path: str,
|
||
model_names: List[str],
|
||
limit_worker_concurrency: int,
|
||
no_register: bool,
|
||
device: str,
|
||
num_gpus: int,
|
||
max_gpu_memory: str,
|
||
dtype: Optional[torch.dtype] = None,
|
||
load_8bit: bool = False,
|
||
cpu_offloading: bool = False,
|
||
gptq_config: Optional[GptqConfig] = None,
|
||
awq_config: Optional[AWQConfig] = None,
|
||
stream_interval: int = 2,
|
||
conv_template: Optional[str] = None,
|
||
embed_in_truncate: bool = False,
|
||
seed: Optional[int] = None,
|
||
load_kwargs = {}, #修改点
|
||
**kwargs,
|
||
):
|
||
super().__init__(
|
||
controller_addr,
|
||
worker_addr,
|
||
worker_id,
|
||
model_path,
|
||
model_names,
|
||
limit_worker_concurrency,
|
||
conv_template=conv_template,
|
||
)
|
||
|
||
logger.info(f"Loading the model {self.model_names} on worker {worker_id} ...")
|
||
self.model, self.tokenizer = load_model(
|
||
model_path,
|
||
device=device,
|
||
num_gpus=num_gpus,
|
||
max_gpu_memory=max_gpu_memory,
|
||
dtype=dtype,
|
||
load_8bit=load_8bit,
|
||
cpu_offloading=cpu_offloading,
|
||
gptq_config=gptq_config,
|
||
awq_config=awq_config,
|
||
load_kwargs=load_kwargs #修改点
|
||
)
|
||
self.device = device
|
||
if self.tokenizer.pad_token == None:
|
||
self.tokenizer.pad_token = self.tokenizer.eos_token
|
||
self.context_len = get_context_length(self.model.config)
|
||
print("**"*100)
|
||
self.generate_stream_func = get_generate_stream_function(self.model, model_path)
|
||
print(f"self.generate_stream_func{self.generate_stream_func}")
|
||
print("*"*100)
|
||
self.stream_interval = stream_interval
|
||
self.embed_in_truncate = embed_in_truncate
|
||
self.seed = seed
|
||
|
||
if not no_register:
|
||
self.init_heart_beat()
|
||
```
|
||
2. 在fastchat.serve.model_worker文件的create_model_worker增加如下args参数:
|
||
|
||
```python
|
||
parser.add_argument("--load_kwargs",type=dict,default={})
|
||
```
|
||
|
||
并将如下语句:
|
||
|
||
```python
|
||
worker = ModelWorker(
|
||
args.controller_address,
|
||
args.worker_address,
|
||
worker_id,
|
||
args.model_path,
|
||
args.model_names,
|
||
args.limit_worker_concurrency,
|
||
no_register=args.no_register,
|
||
device=args.device,
|
||
num_gpus=args.num_gpus,
|
||
max_gpu_memory=args.max_gpu_memory,
|
||
dtype=str_to_torch_dtype(args.dtype),
|
||
load_8bit=args.load_8bit,
|
||
cpu_offloading=args.cpu_offloading,
|
||
gptq_config=gptq_config,
|
||
awq_config=awq_config,
|
||
stream_interval=args.stream_interval,
|
||
conv_template=args.conv_template,
|
||
embed_in_truncate=args.embed_in_truncate,
|
||
seed=args.seed,
|
||
)
|
||
```
|
||
|
||
修改为:
|
||
|
||
```python
|
||
worker = ModelWorker(
|
||
args.controller_address,
|
||
args.worker_address,
|
||
worker_id,
|
||
args.model_path,
|
||
args.model_names,
|
||
args.limit_worker_concurrency,
|
||
no_register=args.no_register,
|
||
device=args.device,
|
||
num_gpus=args.num_gpus,
|
||
max_gpu_memory=args.max_gpu_memory,
|
||
dtype=str_to_torch_dtype(args.dtype),
|
||
load_8bit=args.load_8bit,
|
||
cpu_offloading=args.cpu_offloading,
|
||
gptq_config=gptq_config,
|
||
awq_config=awq_config,
|
||
stream_interval=args.stream_interval,
|
||
conv_template=args.conv_template,
|
||
embed_in_truncate=args.embed_in_truncate,
|
||
seed=args.seed,
|
||
load_kwargs=args.load_kwargs
|
||
)
|
||
```
|
||
|
||
至此,我们完成了fastchat加载ptuning的所有修改,在调用fastchat加载p-tuning时,可以通过加入 `PEFT_SHARE_BASE_WEIGHTS=true`,并以字典的形式添加--load_kwargs参数为训练ptuning时的pre_seq_len值即可,例如将2.2.2步骤中的 `parser.add_argument("--load_kwargs",type=dict,default={})`修改为:
|
||
|
||
`parser.add_argument("--load_kwargs",type=dict,default={"pre_seq_len":16})`
|
||
|
||
# 3 langchain-chatchat代码修改:
|
||
|
||
1. 在configs/serve_config.py中的FSCHAT_MODEL_WORKERS字典中增加如下字段:
|
||
|
||
```
|
||
"load_kwargs": {"pre_seq_len": 16} #值修改为adapter_config.json中的pre_seq_len值
|
||
```
|
||
2. 将startup.py中的create_model_worker_app修改为:
|
||
|
||
```python
|
||
def create_model_worker_app(log_level: str = "INFO", **kwargs) -> FastAPI:
|
||
"""
|
||
kwargs包含的字段如下:
|
||
host:
|
||
port:
|
||
model_names:[`model_name`]
|
||
controller_address:
|
||
worker_address:
|
||
|
||
|
||
对于online_api:
|
||
online_api:True
|
||
worker_class: `provider`
|
||
对于离线模型:
|
||
model_path: `model_name_or_path`,huggingface的repo-id或本地路径
|
||
device:`LLM_DEVICE`
|
||
"""
|
||
import fastchat.constants
|
||
fastchat.constants.LOGDIR = LOG_PATH
|
||
from fastchat.serve.model_worker import worker_id, logger
|
||
import argparse
|
||
logger.setLevel(log_level)
|
||
|
||
parser = argparse.ArgumentParser()
|
||
args = parser.parse_args([])
|
||
|
||
for k, v in kwargs.items():
|
||
setattr(args, k, v)
|
||
|
||
# 在线模型API
|
||
if worker_class := kwargs.get("worker_class"):
|
||
from fastchat.serve.model_worker import app
|
||
worker = worker_class(model_names=args.model_names,
|
||
controller_addr=args.controller_address,
|
||
worker_addr=args.worker_address)
|
||
sys.modules["fastchat.serve.model_worker"].worker = worker
|
||
# 本地模型
|
||
else:
|
||
from configs.model_config import VLLM_MODEL_DICT
|
||
if kwargs["model_names"][0] in VLLM_MODEL_DICT and args.infer_turbo == "vllm":
|
||
import fastchat.serve.vllm_worker
|
||
from fastchat.serve.vllm_worker import VLLMWorker,app
|
||
from vllm import AsyncLLMEngine
|
||
from vllm.engine.arg_utils import AsyncEngineArgs,EngineArgs
|
||
args.tokenizer = args.model_path # 如果tokenizer与model_path不一致在此处添加
|
||
args.tokenizer_mode = 'auto'
|
||
args.trust_remote_code= True
|
||
args.download_dir= None
|
||
args.load_format = 'auto'
|
||
args.dtype = 'auto'
|
||
args.seed = 0
|
||
args.worker_use_ray = False
|
||
args.pipeline_parallel_size = 1
|
||
args.tensor_parallel_size = 1
|
||
args.block_size = 16
|
||
args.swap_space = 4 # GiB
|
||
args.gpu_memory_utilization = 0.90
|
||
args.max_num_batched_tokens = 2560
|
||
args.max_num_seqs = 256
|
||
args.disable_log_stats = False
|
||
args.conv_template = None
|
||
args.limit_worker_concurrency = 5
|
||
args.no_register = False
|
||
args.num_gpus = 1 # vllm worker的切分是tensor并行,这里填写显卡的数量
|
||
args.engine_use_ray = False
|
||
args.disable_log_requests = False
|
||
if args.model_path:
|
||
args.model = args.model_path
|
||
if args.num_gpus > 1:
|
||
args.tensor_parallel_size = args.num_gpus
|
||
|
||
for k, v in kwargs.items():
|
||
setattr(args, k, v)
|
||
|
||
engine_args = AsyncEngineArgs.from_cli_args(args)
|
||
engine = AsyncLLMEngine.from_engine_args(engine_args)
|
||
|
||
worker = VLLMWorker(
|
||
controller_addr = args.controller_address,
|
||
worker_addr = args.worker_address,
|
||
worker_id = worker_id,
|
||
model_path = args.model_path,
|
||
model_names = args.model_names,
|
||
limit_worker_concurrency = args.limit_worker_concurrency,
|
||
no_register = args.no_register,
|
||
llm_engine = engine,
|
||
conv_template = args.conv_template,
|
||
)
|
||
sys.modules["fastchat.serve.vllm_worker"].engine = engine
|
||
sys.modules["fastchat.serve.vllm_worker"].worker = worker
|
||
|
||
else:
|
||
from fastchat.serve.model_worker import app, GptqConfig, AWQConfig, ModelWorker
|
||
args.gpus = "0" # GPU的编号,如果有多个GPU,可以设置为"0,1,2,3"
|
||
args.max_gpu_memory = "20GiB"
|
||
args.num_gpus = 1 # model worker的切分是model并行,这里填写显卡的数量
|
||
|
||
args.load_8bit = False
|
||
args.cpu_offloading = None
|
||
args.gptq_ckpt = None
|
||
args.gptq_wbits = 16
|
||
args.gptq_groupsize = -1
|
||
args.gptq_act_order = False
|
||
args.awq_ckpt = None
|
||
args.awq_wbits = 16
|
||
args.awq_groupsize = -1
|
||
args.model_names = []
|
||
args.conv_template = None
|
||
args.limit_worker_concurrency = 5
|
||
args.stream_interval = 2
|
||
args.no_register = False
|
||
args.embed_in_truncate = False
|
||
args.load_kwargs = {"pre_seq_len": 16} # 改*************************
|
||
for k, v in kwargs.items():
|
||
setattr(args, k, v)
|
||
if args.gpus:
|
||
if args.num_gpus is None:
|
||
args.num_gpus = len(args.gpus.split(','))
|
||
if len(args.gpus.split(",")) < args.num_gpus:
|
||
raise ValueError(
|
||
f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!"
|
||
)
|
||
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
|
||
gptq_config = GptqConfig(
|
||
ckpt=args.gptq_ckpt or args.model_path,
|
||
wbits=args.gptq_wbits,
|
||
groupsize=args.gptq_groupsize,
|
||
act_order=args.gptq_act_order,
|
||
)
|
||
awq_config = AWQConfig(
|
||
ckpt=args.awq_ckpt or args.model_path,
|
||
wbits=args.awq_wbits,
|
||
groupsize=args.awq_groupsize,
|
||
)
|
||
|
||
worker = ModelWorker(
|
||
controller_addr=args.controller_address,
|
||
worker_addr=args.worker_address,
|
||
worker_id=worker_id,
|
||
model_path=args.model_path,
|
||
model_names=args.model_names,
|
||
limit_worker_concurrency=args.limit_worker_concurrency,
|
||
no_register=args.no_register,
|
||
device=args.device,
|
||
num_gpus=args.num_gpus,
|
||
max_gpu_memory=args.max_gpu_memory,
|
||
load_8bit=args.load_8bit,
|
||
cpu_offloading=args.cpu_offloading,
|
||
gptq_config=gptq_config,
|
||
awq_config=awq_config,
|
||
stream_interval=args.stream_interval,
|
||
conv_template=args.conv_template,
|
||
embed_in_truncate=args.embed_in_truncate,
|
||
load_kwargs=args.load_kwargs #改*************************
|
||
)
|
||
sys.modules["fastchat.serve.model_worker"].args = args
|
||
sys.modules["fastchat.serve.model_worker"].gptq_config = gptq_config
|
||
|
||
sys.modules["fastchat.serve.model_worker"].worker = worker
|
||
|
||
MakeFastAPIOffline(app)
|
||
app.title = f"FastChat LLM Server ({args.model_names[0]})"
|
||
app._worker = worker
|
||
return app
|
||
```
|
||
|
||
至此,我们完成了langchain-chatchat加载p-tuning的全部操作,可以如下方式加载p-tuning:
|
||
|
||
```shell
|
||
PEFT_SHARE_BASE_WEIGHTS=true python startup.py -a
|
||
|
||
```
|