Langchain-Chatchat/server/knowledge_base/knowledge_file.py

49 lines
1.9 KiB
Python

import os.path
from server.knowledge_base.utils import (get_file_path, get_vs_path,
refresh_vs_cache, load_embeddings)
from configs.model_config import (embedding_model_dict, EMBEDDING_MODEL, EMBEDDING_DEVICE)
from langchain.vectorstores import FAISS
from server.utils import torch_gc
from server.knowledge_base import KnowledgeBase
class KnowledgeFile:
def __init__(
self,
filename: str,
knowledge_base_name: str
):
self.kb = KnowledgeBase.load(knowledge_base_name)
self.knowledge_base_type = "faiss"
self.filename = filename
self.ext = os.path.splitext(filename)[-1]
self.filepath = get_file_path(knowledge_base_name, filename)
self.docs = None
def file2text(self):
if self.ext in []:
from langchain.document_loaders import UnstructuredFileLoader
loader = UnstructuredFileLoader(self.filepath)
elif self.ext in []:
pass
from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
return loader.load_and_split(text_splitter)
def docs2vs(self):
vs_path = get_vs_path(self.kb.kb_name)
embeddings = load_embeddings(embedding_model_dict[EMBEDDING_MODEL], EMBEDDING_DEVICE)
if os.path.exists(vs_path) and "index.faiss" in os.listdir(vs_path):
vector_store = FAISS.load_local(vs_path, embeddings)
vector_store.add_documents(self.docs)
torch_gc()
else:
if not os.path.exists(vs_path):
os.makedirs(vs_path)
vector_store = FAISS.from_documents(self.docs, embeddings) # docs 为Document列表
torch_gc()
vector_store.save_local(vs_path)
refresh_vs_cache(self.kb.kb_name)
return True