68 lines
2.6 KiB
Python
68 lines
2.6 KiB
Python
from __future__ import annotations
|
||
from langchain.agents import Tool, AgentOutputParser
|
||
from langchain.prompts import StringPromptTemplate
|
||
from typing import List
|
||
from langchain.schema import AgentAction, AgentFinish
|
||
|
||
from configs import SUPPORT_AGENT_MODEL
|
||
from server.agent import model_container
|
||
class CustomPromptTemplate(StringPromptTemplate):
|
||
template: str
|
||
tools: List[Tool]
|
||
|
||
def format(self, **kwargs) -> str:
|
||
intermediate_steps = kwargs.pop("intermediate_steps")
|
||
thoughts = ""
|
||
for action, observation in intermediate_steps:
|
||
thoughts += action.log
|
||
thoughts += f"\nObservation: {observation}\nThought: "
|
||
kwargs["agent_scratchpad"] = thoughts
|
||
kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools])
|
||
kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools])
|
||
return self.template.format(**kwargs)
|
||
|
||
class CustomOutputParser(AgentOutputParser):
|
||
begin: bool = False
|
||
def __init__(self):
|
||
super().__init__()
|
||
self.begin = True
|
||
|
||
def parse(self, llm_output: str) -> AgentFinish | tuple[dict[str, str], str] | AgentAction:
|
||
if not any(agent in model_container.MODEL for agent in SUPPORT_AGENT_MODEL) and self.begin:
|
||
self.begin = False
|
||
stop_words = ["Observation:"]
|
||
min_index = len(llm_output)
|
||
for stop_word in stop_words:
|
||
index = llm_output.find(stop_word)
|
||
if index != -1 and index < min_index:
|
||
min_index = index
|
||
llm_output = llm_output[:min_index]
|
||
|
||
if "Final Answer:" in llm_output:
|
||
self.begin = True
|
||
return AgentFinish(
|
||
return_values={"output": llm_output.split("Final Answer:", 1)[-1].strip()},
|
||
log=llm_output,
|
||
)
|
||
parts = llm_output.split("Action:")
|
||
if len(parts) < 2:
|
||
return AgentFinish(
|
||
return_values={"output": f"调用agent工具失败,该回答为大模型自身能力的回答:\n\n `{llm_output}`"},
|
||
log=llm_output,
|
||
)
|
||
|
||
action = parts[1].split("Action Input:")[0].strip()
|
||
action_input = parts[1].split("Action Input:")[1].strip()
|
||
try:
|
||
ans = AgentAction(
|
||
tool=action,
|
||
tool_input=action_input.strip(" ").strip('"'),
|
||
log=llm_output
|
||
)
|
||
return ans
|
||
except:
|
||
return AgentFinish(
|
||
return_values={"output": f"调用agent失败: `{llm_output}`"},
|
||
log=llm_output,
|
||
)
|