298 lines
10 KiB
Plaintext
298 lines
10 KiB
Plaintext
import os
|
||
import logging
|
||
import torch
|
||
import argparse
|
||
import json
|
||
# 日志格式
|
||
LOG_FORMAT = "%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s"
|
||
logger = logging.getLogger()
|
||
logger.setLevel(logging.INFO)
|
||
logging.basicConfig(format=LOG_FORMAT)
|
||
|
||
import argparse
|
||
import json
|
||
|
||
parser = argparse.ArgumentParser()
|
||
#------multi worker-----------------
|
||
parser.add_argument('--model-path-address',
|
||
default="THUDM/chatglm2-6b@localhost@20002",
|
||
nargs="+",
|
||
type=str,
|
||
help="model path, host, and port, formatted as model-path@host@path")
|
||
#---------------controller-------------------------
|
||
|
||
parser.add_argument("--controller-host", type=str, default="localhost")
|
||
parser.add_argument("--controller-port", type=int, default=21001)
|
||
parser.add_argument(
|
||
"--dispatch-method",
|
||
type=str,
|
||
choices=["lottery", "shortest_queue"],
|
||
default="shortest_queue",
|
||
)
|
||
controller_args = ["controller-host","controller-port","dispatch-method"]
|
||
|
||
#----------------------worker------------------------------------------
|
||
|
||
parser.add_argument("--worker-host", type=str, default="localhost")
|
||
parser.add_argument("--worker-port", type=int, default=21002)
|
||
# parser.add_argument("--worker-address", type=str, default="http://localhost:21002")
|
||
# parser.add_argument(
|
||
# "--controller-address", type=str, default="http://localhost:21001"
|
||
# )
|
||
parser.add_argument(
|
||
"--model-path",
|
||
type=str,
|
||
default="lmsys/vicuna-7b-v1.3",
|
||
help="The path to the weights. This can be a local folder or a Hugging Face repo ID.",
|
||
)
|
||
parser.add_argument(
|
||
"--revision",
|
||
type=str,
|
||
default="main",
|
||
help="Hugging Face Hub model revision identifier",
|
||
)
|
||
parser.add_argument(
|
||
"--device",
|
||
type=str,
|
||
choices=["cpu", "cuda", "mps", "xpu"],
|
||
default="cuda",
|
||
help="The device type",
|
||
)
|
||
parser.add_argument(
|
||
"--gpus",
|
||
type=str,
|
||
default="0",
|
||
help="A single GPU like 1 or multiple GPUs like 0,2",
|
||
)
|
||
parser.add_argument("--num-gpus", type=int, default=1)
|
||
parser.add_argument(
|
||
"--max-gpu-memory",
|
||
type=str,
|
||
help="The maximum memory per gpu. Use a string like '13Gib'",
|
||
)
|
||
parser.add_argument(
|
||
"--load-8bit", action="store_true", help="Use 8-bit quantization"
|
||
)
|
||
parser.add_argument(
|
||
"--cpu-offloading",
|
||
action="store_true",
|
||
help="Only when using 8-bit quantization: Offload excess weights to the CPU that don't fit on the GPU",
|
||
)
|
||
parser.add_argument(
|
||
"--gptq-ckpt",
|
||
type=str,
|
||
default=None,
|
||
help="Load quantized model. The path to the local GPTQ checkpoint.",
|
||
)
|
||
parser.add_argument(
|
||
"--gptq-wbits",
|
||
type=int,
|
||
default=16,
|
||
choices=[2, 3, 4, 8, 16],
|
||
help="#bits to use for quantization",
|
||
)
|
||
parser.add_argument(
|
||
"--gptq-groupsize",
|
||
type=int,
|
||
default=-1,
|
||
help="Groupsize to use for quantization; default uses full row.",
|
||
)
|
||
parser.add_argument(
|
||
"--gptq-act-order",
|
||
action="store_true",
|
||
help="Whether to apply the activation order GPTQ heuristic",
|
||
)
|
||
parser.add_argument(
|
||
"--model-names",
|
||
type=lambda s: s.split(","),
|
||
help="Optional display comma separated names",
|
||
)
|
||
parser.add_argument(
|
||
"--limit-worker-concurrency",
|
||
type=int,
|
||
default=5,
|
||
help="Limit the model concurrency to prevent OOM.",
|
||
)
|
||
parser.add_argument("--stream-interval", type=int, default=2)
|
||
parser.add_argument("--no-register", action="store_true")
|
||
|
||
worker_args = [
|
||
"worker-host","worker-port",
|
||
"model-path","revision","device","gpus","num-gpus",
|
||
"max-gpu-memory","load-8bit","cpu-offloading",
|
||
"gptq-ckpt","gptq-wbits","gptq-groupsize",
|
||
"gptq-act-order","model-names","limit-worker-concurrency",
|
||
"stream-interval","no-register",
|
||
"controller-address"
|
||
]
|
||
#-----------------openai server---------------------------
|
||
|
||
parser.add_argument("--server-host", type=str, default="localhost", help="host name")
|
||
parser.add_argument("--server-port", type=int, default=8001, help="port number")
|
||
parser.add_argument(
|
||
"--allow-credentials", action="store_true", help="allow credentials"
|
||
)
|
||
# parser.add_argument(
|
||
# "--allowed-origins", type=json.loads, default=["*"], help="allowed origins"
|
||
# )
|
||
# parser.add_argument(
|
||
# "--allowed-methods", type=json.loads, default=["*"], help="allowed methods"
|
||
# )
|
||
# parser.add_argument(
|
||
# "--allowed-headers", type=json.loads, default=["*"], help="allowed headers"
|
||
# )
|
||
parser.add_argument(
|
||
"--api-keys",
|
||
type=lambda s: s.split(","),
|
||
help="Optional list of comma separated API keys",
|
||
)
|
||
server_args = ["server-host","server-port","allow-credentials","api-keys",
|
||
"controller-address"
|
||
]
|
||
#-------------------似乎也可以在这里把所有可配置的项目做成命令行-----------------------
|
||
|
||
|
||
|
||
|
||
# 在以下字典中修改属性值,以指定本地embedding模型存储位置
|
||
# 如将 "text2vec": "GanymedeNil/text2vec-large-chinese" 修改为 "text2vec": "User/Downloads/text2vec-large-chinese"
|
||
# 此处请写绝对路径
|
||
embedding_model_dict = {
|
||
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
|
||
"ernie-base": "nghuyong/ernie-3.0-base-zh",
|
||
"text2vec-base": "shibing624/text2vec-base-chinese",
|
||
"text2vec": "GanymedeNil/text2vec-large-chinese",
|
||
"text2vec-paraphrase": "shibing624/text2vec-base-chinese-paraphrase",
|
||
"text2vec-sentence": "shibing624/text2vec-base-chinese-sentence",
|
||
"text2vec-multilingual": "shibing624/text2vec-base-multilingual",
|
||
"m3e-small": "moka-ai/m3e-small",
|
||
"m3e-base": "moka-ai/m3e-base",
|
||
"m3e-large": "moka-ai/m3e-large",
|
||
}
|
||
|
||
# 选用的 Embedding 名称
|
||
EMBEDDING_MODEL = "m3e-base"
|
||
|
||
# Embedding 模型运行设备
|
||
EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||
|
||
|
||
llm_model_dict = {
|
||
"chatglm-6b": {
|
||
"local_model_path": "THUDM/chatglm-6b",
|
||
"api_base_url": "http://localhost:8888/v1", # "name"修改为fastchat服务中的"api_base_url"
|
||
"api_key": "EMPTY"
|
||
},
|
||
|
||
"chatglm-6b-int4": {
|
||
"local_model_path": "THUDM/chatglm-6b-int4",
|
||
"api_base_url": "http://localhost:8001/v1", # "name"修改为fastchat服务中的"api_base_url"
|
||
"api_key": "EMPTY"
|
||
},
|
||
|
||
"chatglm2-6b": {
|
||
"local_model_path": "THUDM/chatglm2-6b",
|
||
"api_base_url": "http://localhost:8888/v1", # "name"修改为fastchat服务中的"api_base_url"
|
||
"api_key": "EMPTY"
|
||
},
|
||
|
||
"chatglm2-6b-32k": {
|
||
"local_model_path": "THUDM/chatglm2-6b-32k", # "THUDM/chatglm2-6b-32k",
|
||
"api_base_url": "http://localhost:8888/v1", # "name"修改为fastchat服务中的"api_base_url"
|
||
"api_key": "EMPTY"
|
||
},
|
||
|
||
"vicuna-13b-hf": {
|
||
"local_model_path": "",
|
||
"api_base_url": "http://localhost:8000/v1", # "name"修改为fastchat服务中的"api_base_url"
|
||
"api_key": "EMPTY"
|
||
},
|
||
|
||
# 调用chatgpt时如果报出: urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='api.openai.com', port=443):
|
||
# Max retries exceeded with url: /v1/chat/completions
|
||
# 则需要将urllib3版本修改为1.25.11
|
||
# 如果依然报urllib3.exceptions.MaxRetryError: HTTPSConnectionPool,则将https改为http
|
||
# 参考https://zhuanlan.zhihu.com/p/350015032
|
||
|
||
# 如果报出:raise NewConnectionError(
|
||
# urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPSConnection object at 0x000001FE4BDB85E0>:
|
||
# Failed to establish a new connection: [WinError 10060]
|
||
# 则是因为内地和香港的IP都被OPENAI封了,需要切换为日本、新加坡等地
|
||
"openai-chatgpt-3.5": {
|
||
"local_model_path": "gpt-3.5-turbo",
|
||
"api_base_url": "https://api.openapi.com/v1",
|
||
"api_key": os.environ.get("OPENAI_API_KEY")
|
||
},
|
||
}
|
||
|
||
# LLM 名称
|
||
LLM_MODEL = "chatglm2-6b"
|
||
|
||
# LLM 运行设备
|
||
LLM_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||
|
||
# 日志存储路径
|
||
LOG_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "logs")
|
||
if not os.path.exists(LOG_PATH):
|
||
os.mkdir(LOG_PATH)
|
||
|
||
# 知识库默认存储路径
|
||
KB_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "knowledge_base")
|
||
|
||
# 数据库默认存储路径。
|
||
# 如果使用sqlite,可以直接修改DB_ROOT_PATH;如果使用其它数据库,请直接修改SQLALCHEMY_DATABASE_URI。
|
||
DB_ROOT_PATH = os.path.join(KB_ROOT_PATH, "info.db")
|
||
SQLALCHEMY_DATABASE_URI = f"sqlite:///{DB_ROOT_PATH}"
|
||
|
||
# 缓存向量库数量
|
||
CACHED_VS_NUM = 1
|
||
|
||
# 知识库匹配向量数量
|
||
VECTOR_SEARCH_TOP_K = 5
|
||
|
||
# 搜索引擎匹配结题数量
|
||
SEARCH_ENGINE_TOP_K = 5
|
||
|
||
# nltk 模型存储路径
|
||
NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data")
|
||
|
||
# 基于本地知识问答的提示词模版
|
||
PROMPT_TEMPLATE = """【指令】根据已知信息,简洁和专业的来回答问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题”,不允许在答案中添加编造成分,答案请使用中文。
|
||
|
||
【已知信息】{context}
|
||
|
||
【问题】{question}"""
|
||
|
||
# API 是否开启跨域,默认为False,如果需要开启,请设置为True
|
||
# is open cross domain
|
||
OPEN_CROSS_DOMAIN = False
|
||
|
||
# Bing 搜索必备变量
|
||
# 使用 Bing 搜索需要使用 Bing Subscription Key,需要在azure port中申请试用bing search
|
||
# 具体申请方式请见
|
||
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/create-bing-search-service-resource
|
||
# 使用python创建bing api 搜索实例详见:
|
||
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/quickstarts/rest/python
|
||
BING_SEARCH_URL = "https://api.bing.microsoft.com/v7.0/search"
|
||
# 注意不是bing Webmaster Tools的api key,
|
||
|
||
# 此外,如果是在服务器上,报Failed to establish a new connection: [Errno 110] Connection timed out
|
||
# 是因为服务器加了防火墙,需要联系管理员加白名单,如果公司的服务器的话,就别想了GG
|
||
BING_SUBSCRIPTION_KEY = ""
|
||
|
||
kbs_config = {
|
||
"faiss": {
|
||
},
|
||
"milvus": {
|
||
"host": "127.0.0.1",
|
||
"port": "19530",
|
||
"user": "",
|
||
"password": "",
|
||
"secure": False,
|
||
}
|
||
}
|
||
|
||
# 是否开启中文标题加强,以及标题增强的相关配置
|
||
# 通过增加标题判断,判断哪些文本为标题,并在metadata中进行标记;
|
||
# 然后将文本与往上一级的标题进行拼合,实现文本信息的增强。
|
||
ZH_TITLE_ENHANCE = False |