Langchain-Chatchat/server/chat/knowledge_base_chat.py

64 lines
2.7 KiB
Python

from fastapi import Body
from fastapi.responses import StreamingResponse
from configs.model_config import (llm_model_dict, LLM_MODEL, PROMPT_TEMPLATE,
VECTOR_SEARCH_TOP_K)
from server.chat.utils import wrap_done
from server.utils import BaseResponse
from langchain.chat_models import ChatOpenAI
from langchain import LLMChain
from langchain.callbacks import AsyncIteratorCallbackHandler
from typing import AsyncIterable
import asyncio
from langchain.prompts import PromptTemplate
from server.knowledge_base.knowledge_base_factory import KBServiceFactory
from server.knowledge_base.kb_service.base import KBService
import json
def knowledge_base_chat(query: str = Body(..., description="用户输入", example="你好"),
knowledge_base_name: str = Body(..., description="知识库名称", example="samples"),
top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"),
):
kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
if kb is None:
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
async def knowledge_base_chat_iterator(query: str,
kb: KBService,
top_k: int,
) -> AsyncIterable[str]:
callback = AsyncIteratorCallbackHandler()
model = ChatOpenAI(
streaming=True,
verbose=True,
callbacks=[callback],
openai_api_key=llm_model_dict[LLM_MODEL]["api_key"],
openai_api_base=llm_model_dict[LLM_MODEL]["api_base_url"],
model_name=LLM_MODEL
)
docs = kb.search_docs(query, top_k)
context = "\n".join([doc.page_content for doc in docs])
prompt = PromptTemplate(template=PROMPT_TEMPLATE, input_variables=["context", "question"])
chain = LLMChain(prompt=prompt, llm=model)
# Begin a task that runs in the background.
task = asyncio.create_task(wrap_done(
chain.acall({"context": context, "question": query}),
callback.done),
)
source_documents = [
f"""出处 [{inum + 1}] [{doc.metadata["source"]}]({doc.metadata["source"]}) \n\n{doc.page_content}\n\n"""
for inum, doc in enumerate(docs)
]
async for token in callback.aiter():
# Use server-sent-events to stream the response
yield json.dumps({"answer": token,
"docs": source_documents})
await task
return StreamingResponse(knowledge_base_chat_iterator(query, kb, top_k),
media_type="text/event-stream")