Langchain-Chatchat/cli_demo.py

44 lines
2.0 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from configs.model_config import *
from chains.local_doc_qa import LocalDocQA
import os
import nltk
nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path
# Show reply with source text from input document
REPLY_WITH_SOURCE = True
if __name__ == "__main__":
local_doc_qa = LocalDocQA()
local_doc_qa.init_cfg(llm_model=LLM_MODEL,
embedding_model=EMBEDDING_MODEL,
embedding_device=EMBEDDING_DEVICE,
llm_history_len=LLM_HISTORY_LEN,
top_k=VECTOR_SEARCH_TOP_K)
vs_path = None
while not vs_path:
filepath = input("Input your local knowledge file path 请输入本地知识文件路径:")
# 判断 filepath 是否为空,如果为空的话,重新让用户输入,防止用户误触回车
if not filepath:
continue
vs_path, _ = local_doc_qa.init_knowledge_vector_store(filepath)
history = []
while True:
query = input("Input your question 请输入问题:")
last_print_len = 0
for resp, history in local_doc_qa.get_knowledge_based_answer(query=query,
vs_path=vs_path,
chat_history=history,
streaming=STREAMING):
if STREAMING:
logger.info(resp["result"][last_print_len:])
last_print_len = len(resp["result"])
else:
logger.info(resp["result"])
if REPLY_WITH_SOURCE:
source_text = [f"""出处 [{inum + 1}] {os.path.split(doc.metadata['source'])[-1]}\n\n{doc.page_content}\n\n"""
# f"""相关度:{doc.metadata['score']}\n\n"""
for inum, doc in
enumerate(resp["source_documents"])]
logger.info("\n\n" + "\n\n".join(source_text))