44 lines
2.0 KiB
Python
44 lines
2.0 KiB
Python
from configs.model_config import *
|
||
from chains.local_doc_qa import LocalDocQA
|
||
import os
|
||
import nltk
|
||
|
||
nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path
|
||
|
||
# Show reply with source text from input document
|
||
REPLY_WITH_SOURCE = True
|
||
|
||
if __name__ == "__main__":
|
||
local_doc_qa = LocalDocQA()
|
||
local_doc_qa.init_cfg(llm_model=LLM_MODEL,
|
||
embedding_model=EMBEDDING_MODEL,
|
||
embedding_device=EMBEDDING_DEVICE,
|
||
llm_history_len=LLM_HISTORY_LEN,
|
||
top_k=VECTOR_SEARCH_TOP_K)
|
||
vs_path = None
|
||
while not vs_path:
|
||
filepath = input("Input your local knowledge file path 请输入本地知识文件路径:")
|
||
# 判断 filepath 是否为空,如果为空的话,重新让用户输入,防止用户误触回车
|
||
if not filepath:
|
||
continue
|
||
vs_path, _ = local_doc_qa.init_knowledge_vector_store(filepath)
|
||
history = []
|
||
while True:
|
||
query = input("Input your question 请输入问题:")
|
||
last_print_len = 0
|
||
for resp, history in local_doc_qa.get_knowledge_based_answer(query=query,
|
||
vs_path=vs_path,
|
||
chat_history=history,
|
||
streaming=STREAMING):
|
||
if STREAMING:
|
||
logger.info(resp["result"][last_print_len:])
|
||
last_print_len = len(resp["result"])
|
||
else:
|
||
logger.info(resp["result"])
|
||
if REPLY_WITH_SOURCE:
|
||
source_text = [f"""出处 [{inum + 1}] {os.path.split(doc.metadata['source'])[-1]}:\n\n{doc.page_content}\n\n"""
|
||
# f"""相关度:{doc.metadata['score']}\n\n"""
|
||
for inum, doc in
|
||
enumerate(resp["source_documents"])]
|
||
logger.info("\n\n" + "\n\n".join(source_text))
|