221 lines
8.6 KiB
Python
221 lines
8.6 KiB
Python
from fastapi import Body
|
||
from configs import (DEFAULT_VS_TYPE, EMBEDDING_MODEL,
|
||
OVERLAP_SIZE,
|
||
logger, log_verbose, )
|
||
from server.knowledge_base.utils import (list_files_from_folder)
|
||
from sse_starlette import EventSourceResponse
|
||
import json
|
||
from server.knowledge_base.kb_service.base import KBServiceFactory
|
||
from typing import List, Optional
|
||
from server.knowledge_base.kb_summary.base import KBSummaryService
|
||
from server.knowledge_base.kb_summary.summary_chunk import SummaryAdapter
|
||
from server.utils import wrap_done, get_ChatOpenAI, BaseResponse
|
||
from configs import LLM_MODELS, TEMPERATURE
|
||
from server.knowledge_base.model.kb_document_model import DocumentWithVSId
|
||
|
||
def recreate_summary_vector_store(
|
||
knowledge_base_name: str = Body(..., examples=["samples"]),
|
||
allow_empty_kb: bool = Body(True),
|
||
vs_type: str = Body(DEFAULT_VS_TYPE),
|
||
embed_model: str = Body(EMBEDDING_MODEL),
|
||
file_description: str = Body(''),
|
||
model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"),
|
||
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
|
||
max_tokens: Optional[int] = Body(None, description="限制LLM生成Token数量,默认None代表模型最大值"),
|
||
):
|
||
"""
|
||
重建单个知识库文件摘要
|
||
:param max_tokens:
|
||
:param model_name:
|
||
:param temperature:
|
||
:param file_description:
|
||
:param knowledge_base_name:
|
||
:param allow_empty_kb:
|
||
:param vs_type:
|
||
:param embed_model:
|
||
:return:
|
||
"""
|
||
|
||
def output():
|
||
|
||
kb = KBServiceFactory.get_service(knowledge_base_name, vs_type, embed_model)
|
||
if not kb.exists() and not allow_empty_kb:
|
||
yield {"code": 404, "msg": f"未找到知识库 ‘{knowledge_base_name}’"}
|
||
else:
|
||
# 重新创建知识库
|
||
kb_summary = KBSummaryService(knowledge_base_name, embed_model)
|
||
kb_summary.drop_kb_summary()
|
||
kb_summary.create_kb_summary()
|
||
|
||
llm = get_ChatOpenAI(
|
||
model_name=model_name,
|
||
temperature=temperature,
|
||
max_tokens=max_tokens,
|
||
)
|
||
reduce_llm = get_ChatOpenAI(
|
||
model_name=model_name,
|
||
temperature=temperature,
|
||
max_tokens=max_tokens,
|
||
)
|
||
# 文本摘要适配器
|
||
summary = SummaryAdapter.form_summary(llm=llm,
|
||
reduce_llm=reduce_llm,
|
||
overlap_size=OVERLAP_SIZE)
|
||
files = list_files_from_folder(knowledge_base_name)
|
||
|
||
i = 0
|
||
for i, file_name in enumerate(files):
|
||
|
||
doc_infos = kb.list_docs(file_name=file_name)
|
||
docs = summary.summarize(file_description=file_description,
|
||
docs=doc_infos)
|
||
|
||
status_kb_summary = kb_summary.add_kb_summary(summary_combine_docs=docs)
|
||
if status_kb_summary:
|
||
logger.info(f"({i + 1} / {len(files)}): {file_name} 总结完成")
|
||
yield json.dumps({
|
||
"code": 200,
|
||
"msg": f"({i + 1} / {len(files)}): {file_name}",
|
||
"total": len(files),
|
||
"finished": i + 1,
|
||
"doc": file_name,
|
||
}, ensure_ascii=False)
|
||
else:
|
||
|
||
msg = f"知识库'{knowledge_base_name}'总结文件‘{file_name}’时出错。已跳过。"
|
||
logger.error(msg)
|
||
yield json.dumps({
|
||
"code": 500,
|
||
"msg": msg,
|
||
})
|
||
i += 1
|
||
|
||
return EventSourceResponse(output())
|
||
|
||
|
||
def summary_file_to_vector_store(
|
||
knowledge_base_name: str = Body(..., examples=["samples"]),
|
||
file_name: str = Body(..., examples=["test.pdf"]),
|
||
allow_empty_kb: bool = Body(True),
|
||
vs_type: str = Body(DEFAULT_VS_TYPE),
|
||
embed_model: str = Body(EMBEDDING_MODEL),
|
||
file_description: str = Body(''),
|
||
model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"),
|
||
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
|
||
max_tokens: Optional[int] = Body(None, description="限制LLM生成Token数量,默认None代表模型最大值"),
|
||
):
|
||
"""
|
||
单个知识库根据文件名称摘要
|
||
:param model_name:
|
||
:param max_tokens:
|
||
:param temperature:
|
||
:param file_description:
|
||
:param file_name:
|
||
:param knowledge_base_name:
|
||
:param allow_empty_kb:
|
||
:param vs_type:
|
||
:param embed_model:
|
||
:return:
|
||
"""
|
||
|
||
def output():
|
||
kb = KBServiceFactory.get_service(knowledge_base_name, vs_type, embed_model)
|
||
if not kb.exists() and not allow_empty_kb:
|
||
yield {"code": 404, "msg": f"未找到知识库 ‘{knowledge_base_name}’"}
|
||
else:
|
||
# 重新创建知识库
|
||
kb_summary = KBSummaryService(knowledge_base_name, embed_model)
|
||
kb_summary.create_kb_summary()
|
||
|
||
llm = get_ChatOpenAI(
|
||
model_name=model_name,
|
||
temperature=temperature,
|
||
max_tokens=max_tokens,
|
||
)
|
||
reduce_llm = get_ChatOpenAI(
|
||
model_name=model_name,
|
||
temperature=temperature,
|
||
max_tokens=max_tokens,
|
||
)
|
||
# 文本摘要适配器
|
||
summary = SummaryAdapter.form_summary(llm=llm,
|
||
reduce_llm=reduce_llm,
|
||
overlap_size=OVERLAP_SIZE)
|
||
|
||
doc_infos = kb.list_docs(file_name=file_name)
|
||
docs = summary.summarize(file_description=file_description,
|
||
docs=doc_infos)
|
||
|
||
status_kb_summary = kb_summary.add_kb_summary(summary_combine_docs=docs)
|
||
if status_kb_summary:
|
||
logger.info(f" {file_name} 总结完成")
|
||
yield json.dumps({
|
||
"code": 200,
|
||
"msg": f"{file_name} 总结完成",
|
||
"doc": file_name,
|
||
}, ensure_ascii=False)
|
||
else:
|
||
|
||
msg = f"知识库'{knowledge_base_name}'总结文件‘{file_name}’时出错。已跳过。"
|
||
logger.error(msg)
|
||
yield json.dumps({
|
||
"code": 500,
|
||
"msg": msg,
|
||
})
|
||
|
||
return EventSourceResponse(output())
|
||
|
||
|
||
def summary_doc_ids_to_vector_store(
|
||
knowledge_base_name: str = Body(..., examples=["samples"]),
|
||
doc_ids: List = Body([], examples=[["uuid"]]),
|
||
vs_type: str = Body(DEFAULT_VS_TYPE),
|
||
embed_model: str = Body(EMBEDDING_MODEL),
|
||
file_description: str = Body(''),
|
||
model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"),
|
||
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
|
||
max_tokens: Optional[int] = Body(None, description="限制LLM生成Token数量,默认None代表模型最大值"),
|
||
) -> BaseResponse:
|
||
"""
|
||
单个知识库根据doc_ids摘要
|
||
:param knowledge_base_name:
|
||
:param doc_ids:
|
||
:param model_name:
|
||
:param max_tokens:
|
||
:param temperature:
|
||
:param file_description:
|
||
:param vs_type:
|
||
:param embed_model:
|
||
:return:
|
||
"""
|
||
kb = KBServiceFactory.get_service(knowledge_base_name, vs_type, embed_model)
|
||
if not kb.exists():
|
||
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}", data={})
|
||
else:
|
||
llm = get_ChatOpenAI(
|
||
model_name=model_name,
|
||
temperature=temperature,
|
||
max_tokens=max_tokens,
|
||
)
|
||
reduce_llm = get_ChatOpenAI(
|
||
model_name=model_name,
|
||
temperature=temperature,
|
||
max_tokens=max_tokens,
|
||
)
|
||
# 文本摘要适配器
|
||
summary = SummaryAdapter.form_summary(llm=llm,
|
||
reduce_llm=reduce_llm,
|
||
overlap_size=OVERLAP_SIZE)
|
||
|
||
doc_infos = kb.get_doc_by_ids(ids=doc_ids)
|
||
# doc_infos转换成DocumentWithVSId包装的对象
|
||
doc_info_with_ids = [DocumentWithVSId(**doc.dict(), id=with_id) for with_id, doc in zip(doc_ids, doc_infos)]
|
||
|
||
docs = summary.summarize(file_description=file_description,
|
||
docs=doc_info_with_ids)
|
||
|
||
# 将docs转换成dict
|
||
resp_summarize = [{**doc.dict()} for doc in docs]
|
||
|
||
return BaseResponse(code=200, msg="总结完成", data={"summarize": resp_summarize})
|