45 lines
1.5 KiB
Python
45 lines
1.5 KiB
Python
import requests
|
|
import json
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
root_path = Path(__file__).parent.parent.parent
|
|
sys.path.append(str(root_path))
|
|
from server.utils import api_address
|
|
|
|
api_base_url = api_address()
|
|
|
|
kb = "samples"
|
|
file_name = "/media/gpt4-pdf-chatbot-langchain/langchain-ChatGLM/knowledge_base/samples/content/llm/大模型技术栈-实战与应用.md"
|
|
doc_ids = [
|
|
"357d580f-fdf7-495c-b58b-595a398284e8",
|
|
"c7338773-2e83-4671-b237-1ad20335b0f0",
|
|
"6da613d1-327d-466f-8c1a-b32e6f461f47"
|
|
]
|
|
|
|
|
|
def test_summary_file_to_vector_store(api="/knowledge_base/kb_summary_api/summary_file_to_vector_store"):
|
|
url = api_base_url + api
|
|
print("\n文件摘要:")
|
|
r = requests.post(url, json={"knowledge_base_name": kb,
|
|
"file_name": file_name
|
|
}, stream=True)
|
|
for chunk in r.iter_content(None):
|
|
data = json.loads(chunk[6:])
|
|
assert isinstance(data, dict)
|
|
assert data["code"] == 200
|
|
print(data["msg"])
|
|
|
|
|
|
def test_summary_doc_ids_to_vector_store(api="/knowledge_base/kb_summary_api/summary_doc_ids_to_vector_store"):
|
|
url = api_base_url + api
|
|
print("\n文件摘要:")
|
|
r = requests.post(url, json={"knowledge_base_name": kb,
|
|
"doc_ids": doc_ids
|
|
}, stream=True)
|
|
for chunk in r.iter_content(None):
|
|
data = json.loads(chunk[6:])
|
|
assert isinstance(data, dict)
|
|
assert data["code"] == 200
|
|
print(data)
|