Langchain-Chatchat/README.md

251 lines
14 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 基于本地知识的 ChatGLM 应用实现
## 介绍
🌍 [_READ THIS IN ENGLISH_](README_en.md)
🤖️ 一种利用 [ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B) + [langchain](https://github.com/hwchase17/langchain) 实现的基于本地知识的 ChatGLM 应用。
💡 受 [GanymedeNil](https://github.com/GanymedeNil) 的项目 [document.ai](https://github.com/GanymedeNil/document.ai) 和 [AlexZhangji](https://github.com/AlexZhangji) 创建的 [ChatGLM-6B Pull Request](https://github.com/THUDM/ChatGLM-6B/pull/216) 启发,建立了全部基于开源模型实现的本地知识问答应用。
✅ 本项目中 Embedding 选用的是 [GanymedeNil/text2vec-large-chinese](https://huggingface.co/GanymedeNil/text2vec-large-chinese/tree/main)LLM 选用的是 [ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B)。依托上述模型,本项目可实现全部使用**开源**模型**离线私有部署**。
⛓️ 本项目实现原理如下图所示,过程包括加载文件 -> 读取文本 -> 文本分割 -> 文本向量化 -> 问句向量化 -> 在文本向量中匹配出与问句向量最相似的`top k`个 -> 匹配出的文本作为上下文和问题一起添加到`prompt`中 -> 提交给`LLM`生成回答。
![实现原理图](img/langchain+chatglm.png)
🚩 本项目未涉及微调、训练过程,但可利用微调或训练对本项目效果进行优化。
## 更新信息
**[2023/04/15]**
1. 重构项目结构,在根目录下保留命令行 Demo [cli_demo.py](cli_demo.py) 和 Web UI Demo [webui.py](webui.py)
2. 对 Web UI 进行改进,修改为运行 Web UI 后首先按照 [configs/model_config.py](configs/model_config.py) 默认选项加载模型,并增加报错提示信息等;
3. 对常见问题进行补充说明。
**[2023/04/12]**
1. 替换 Web UI 中的样例文件,避免出现 Ubuntu 中出现因文件编码无法读取的问题;
2. 替换`knowledge_based_chatglm.py`中的 prompt 模版,避免出现因 prompt 模版包含中英双语导致 chatglm 返回内容错乱的问题。
**[2023/04/11]**
1. 加入 Web UI V0.1 版本(感谢 [@liangtongt](https://github.com/liangtongt)
2. `README.md`中增加常见问题(感谢 [@calcitem](https://github.com/calcitem) 和 [@bolongliu](https://github.com/bolongliu)
3. 增加 LLM 和 Embedding 模型运行设备是否可用`cuda`、`mps`、`cpu`的自动判断。
4. 在`knowledge_based_chatglm.py`中增加对`filepath`的判断,在之前支持单个文件导入的基础上,现支持单个文件夹路径作为输入,输入后将会遍历文件夹中各个文件,并在命令行中显示每个文件是否成功加载。
**[2023/04/09]**
1. 使用`langchain`中的`RetrievalQA`替代之前选用的`ChatVectorDBChain`,替换后可以有效减少提问 2-3 次后因显存不足而停止运行的问题;
2. 在`knowledge_based_chatglm.py`中增加`EMBEDDING_MODEL`、`VECTOR_SEARCH_TOP_K`、`LLM_MODEL`、`LLM_HISTORY_LEN`、`REPLY_WITH_SOURCE`参数值设置;
3. 增加 GPU 显存需求更小的`chatglm-6b-int4`、`chatglm-6b-int4-qe`作为 LLM 模型备选项;
4. 更正`README.md`中的代码错误(感谢 [@calcitem](https://github.com/calcitem))。
**[2023/04/07]**
1. 解决加载 ChatGLM 模型时发生显存占用为双倍的问题 (感谢 [@suc16](https://github.com/suc16) 和 [@myml](https://github.com/myml))
2. 新增清理显存机制;
3. 新增`nghuyong/ernie-3.0-nano-zh`和`nghuyong/ernie-3.0-base-zh`作为 Embedding 模型备选项,相比`GanymedeNil/text2vec-large-chinese`占用显存资源更少 (感谢 [@lastrei](https://github.com/lastrei))。
## 使用方式
### 硬件需求
- ChatGLM-6B 模型硬件需求
| **量化等级** | **最低 GPU 显存**(推理) | **最低 GPU 显存**(高效参数微调) |
| -------------- | ------------------------- | --------------------------------- |
| FP16无量化 | 13 GB | 14 GB |
| INT8 | 8 GB | 9 GB |
| INT4 | 6 GB | 7 GB |
- Embedding 模型硬件需求
本项目中默认选用的 Embedding 模型 [GanymedeNil/text2vec-large-chinese](https://huggingface.co/GanymedeNil/text2vec-large-chinese/tree/main) 约占用显存 3GB也可修改为在 CPU 中运行。
### 软件需求
本项目已在 Python 3.8CUDA 11.7 环境下完成测试。
### 1. 安装环境
- 环境检查
```shell
# 首先,确信你的机器安装了 Python 3.8 及以上版本
$ python --version
Python 3.8.13
# 如果低于这个版本可使用conda安装环境
$ conda create -p /your_path/env_name python=3.8
# 激活环境
$ source activate /your_path/env_name
# 关闭环境
$ source deactivate /your_path/env_name
# 删除环境
$ conda env remove -p /your_path/env_name
```
- 项目依赖
```shell
# 拉取仓库
$ git clone https://github.com/imClumsyPanda/langchain-ChatGLM.git
# 安装依赖
$ pip install -r requirements.txt
```
注:使用 langchain.document_loaders.UnstructuredFileLoader 进行非结构化文件接入时,可能需要依据文档进行其他依赖包的安装,请参考 [langchain 文档](https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/unstructured_file.html)
### 2. 设置模型默认参数
在开始执行 Web UI 或命令行交互前,请先检查 [configs/model_config.py](configs/model_config.py) 中的各项模型参数设计是否符合需求。
### 3. 执行脚本体验 Web UI 或命令行交互
执行 [webui.py](webui.py) 脚本体验 **Web 交互**
```shell
$ python webui.py
```
注:如未将模型下载至本地,请执行前检查`$HOME/.cache/huggingface/`文件夹剩余空间至少15G
执行后效果如下图所示:
![webui](img/ui1.png)
Web UI 可以实现如下功能:
1. 运行前自动读取`configs/model_config.py`中`LLM`及`Embedding`模型枚举及默认模型设置运行模型,如需重新加载模型,可在界面重新选择后点击`重新加载模型`进行模型加载;
2. 可手动调节保留对话历史长度,可根据显存大小自行调节
3. 添加上传文件功能,通过下拉框选择已上传的文件,点击`加载文件`按钮,过程中可随时更换加载的文件
或执行 [knowledge_based_chatglm.py](cli_demo.py) 脚本体验**命令行交互**
```shell
$ python knowledge_based_chatglm.py
```
### 常见问题
Q1: 本项目支持哪些文件格式?
A1: 目前已测试支持 txt、docx、md、pdf 格式文件,更多文件格式请参考 [langchain 文档](https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/unstructured_file.html)。目前已知文档中若含有特殊字符,可能存在文件无法加载的问题。
Q3: 使用过程中 Python 包`nltk`发生了`Resource punkt not found.`报错,该如何解决?
A3: https://github.com/nltk/nltk_data/raw/gh-pages/packages/tokenizers/punkt.zip 中的 `packages/tokenizers` 解压,放到 `nltk_data/tokenizers` 存储路径下。
`nltk_data` 存储路径可以通过 `nltk.data.path` 查询。
Q4: 使用过程中 Python 包`nltk`发生了`Resource averaged_perceptron_tagger not found.`报错,该如何解决?
A4: 将 https://github.com/nltk/nltk_data/blob/gh-pages/packages/taggers/averaged_perceptron_tagger.zip 下载,解压放到 `nltk_data/taggers` 存储路径下。
`nltk_data` 存储路径可以通过 `nltk.data.path` 查询。
Q5: 本项目可否在 colab 中运行?
A5: 可以尝试使用 chatglm-6b-int4 模型在 colab 中运行,需要注意的是,如需在 colab 中运行 Web UI需将`webui.py`中`demo.queue(concurrency_count=3).launch(
server_name='0.0.0.0', share=False, inbrowser=False)`中参数`share`设置为`True`。
Q6: 在 Anaconda 中使用 pip 安装包无效如何解决?
A6: 此问题是系统环境问题,详细见 [在Anaconda中使用pip安装包无效问题](docs/在Anaconda中使用pip安装包无效问题.md)
Q7: 本项目中所需模型如何下载至本地?
A7: 本项目中使用的模型均为`huggingface.com`中可下载的开源模型,以默认选择的`chatglm-6b`和`text2vec-large-chinese`模型为例,下载模型可执行如下代码:
```shell
# 安装 git lfs
$ git lfs install
# 下载 LLM 模型
$ git clone https://huggingface.co/THUDM/chatglm-6b /your_path/chatglm-6b
# 下载 Embedding 模型
$ git clone https://huggingface.co/GanymedeNil/text2vec-large-chinese /your_path/text2vec
# 模型需要更新时,可打开模型所在文件夹后拉取最新模型文件/代码
$ git pull
```
Q8: `huggingface.com`中模型下载速度较慢怎么办?
A8: 可使用本项目用到的模型权重文件百度网盘地址:
- ernie-3.0-base-zh.zip 链接: https://pan.baidu.com/s/1CIvKnD3qzE-orFouA8qvNQ?pwd=4wih
- ernie-3.0-nano-zh.zip 链接: https://pan.baidu.com/s/1Fh8fgzVdavf5P1omAJJ-Zw?pwd=q6s5
- text2vec-large-chinese.zip 链接: https://pan.baidu.com/s/1sMyPzBIXdEzHygftEoyBuA?pwd=4xs7
- chatglm-6b-int4-qe.zip 链接: https://pan.baidu.com/s/1DDKMOMHtNZccOOBGWIOYww?pwd=22ji
- chatglm-6b-int4.zip 链接: https://pan.baidu.com/s/1pvZ6pMzovjhkA6uPcRLuJA?pwd=3gjd
- chatglm-6b.zip 链接: https://pan.baidu.com/s/1B-MpsVVs1GHhteVBetaquw?pwd=djay
Q9: 下载完模型后,如何修改代码以执行本地模型?
A9: 模型下载完成后,请在 [configs/model_config.py](configs/model_config.py) 文件中,对`embedding_model_dict`和`llm_model_dict`参数进行修改,如把`llm_model_dict`从
```
embedding_model_dict = {
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
"ernie-base": "nghuyong/ernie-3.0-base-zh",
"text2vec": "GanymedeNil/text2vec-large-chinese"
}
```
修改为
```
embedding_model_dict = {
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
"ernie-base": "nghuyong/ernie-3.0-base-zh",
"text2vec": "/Users/liuqian/Downloads/ChatGLM-6B/text2vec-large-chinese"
}
```
## DEMO
以问题`chatglm-6b 的局限性具体体现在哪里,如何实现改进`为例
未使用 langchain 接入本地文档时:
>ChatGLM-6B 是一个基于 GPT-3 的聊天机器人,它的局限性主要体现在以下几个方面:
>1. 语言模型的精度:GPT-3 是一种大型的语言模型,它的精度比较高,但是仍然有一些局限性。例如,它可能无法准确地理解某些方言、口音或者复杂的句子结构。
>2. 知识图谱的完整性:GPT-3 可以生成一些知识图谱,但是其完整性和准确性可能不够。例如,它可能无法准确地理解某些领域的专业知识和术语。
>3. 对话生成的连贯性:GPT-3 可以生成一些连贯的对话,但是其生成的对话可能不够自然。例如,它可能会生成一些虚假的、不连贯的对话或者误解用户的意图。
>
>为了改进 ChatGLM-6B,可以考虑以下几个方面:
>1. 提高语言模型的精度:可以通过增加训练数据、使用更好的语言模型架构、优化模型训练过程等方式来提高语言模型的精度。
>2. 增强知识图谱的完整性:可以通过增加知识图谱的维度、使用更好的知识图谱构建方法、优化知识图谱的匹配算法等方式来增强知识图谱的完整性。
>3. 提高对话生成的连贯性:可以通过增加对话生成模型的上下文信息、使用更好的上下文信息提取方法、优化对话生成模型的算法等方式来提高对话生成的连贯性。
>4. 引入更多的人类反馈:人类反馈可以帮助 ChatGLM-6B 更好地理解用户的意图和需求,从而提高对话生成的质量和准确性。可以通过引入更多的人类客服、使用人类反馈收集器等方式来引入更多的人类反馈。
使用 langchain 接入 ChatGLM-6B 项目的 README.md 文件后 ChatGLM 的回答:
>ChatGLM-6B 是一个基于深度学习的自然语言处理模型,它在回答问题方面表现出色。但是,它也有一些局限性,具体如下:
>1. 语言理解有限:ChatGLM-6B 只学习了中文自然语言,对于其他语言可能会存在理解上的局限性。
>2. 知识储备不足:ChatGLM-6B 的训练数据集只包含了中文语料,因此它可能无法回答一些非中文的问题或者某些特定领域的问题。
>3. 数据量有限:ChatGLM-6B 的训练数据集只有几百万条记录,因此它可能无法回答一些非常具体或者复杂的问题。
>
>为了改进 ChatGLM-6B,可以考虑以下几个方面:
>1. 学习更多的语言知识:可以学习其他语言的自然语言处理技术,扩大语言理解的范围。
>2. 扩大知识储备:可以收集更多的中文语料,或者使用其他语言的数据集来扩充知识储备。
>3. 增加数据量:可以使用更大的数据集来训练 ChatGLM-6B,提高模型的表现。
>4. 引入更多的评估指标:可以引入更多的评估指标来评估模型的表现,从而发现 ChatGLM-6B 存在的不足和局限性。
>5. 改进模型架构:可以改进 ChatGLM-6B 的模型架构,提高模型的性能和表现。例如,可以使用更大的神经网络或者改进的卷积神经网络结构。
## 路线图
- [x] 实现 langchain + ChatGLM-6B 本地知识应用
- [x] 基于 langchain 实现非结构化文件接入
- [x] .md
- [x] .pdf(需要按照常见问题 Q2 中描述进行`detectron2`的安装)
- [x] .docx
- [x] .txt
- [ ] 搜索引擎与本地网页
- [ ] 增加更多 LLM 模型支持
- [x] THUDM/chatglm-6b
- [x] THUDM/chatglm-6b-int4
- [x] THUDM/chatglm-6b-int4-qe
- [ ] 增加 Web UI DEMO
- [x] 利用 gradio 实现 Web UI DEMO
- [x] 添加输出内容及错误提示
- [ ] 引用标注
- [ ] 利用 fastapi 实现 API 部署方式,并实现调用 API 的 web ui DEMO
## 项目交流群
![二维码](img/qr_code.jpg)
🎉 langchain-ChatGLM 项目交流群,如果你也对本项目感兴趣,欢迎加入群聊参与讨论交流。