65 lines
2.1 KiB
Python
65 lines
2.1 KiB
Python
import torch.cuda
|
||
import torch.backends
|
||
import os
|
||
|
||
embedding_model_dict = {
|
||
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
|
||
"ernie-base": "nghuyong/ernie-3.0-base-zh",
|
||
"text2vec-base": "shibing624/text2vec-base-chinese",
|
||
"text2vec": "GanymedeNil/text2vec-large-chinese",
|
||
}
|
||
|
||
# Embedding model name
|
||
EMBEDDING_MODEL = "text2vec"
|
||
|
||
# Embedding running device
|
||
EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||
|
||
# supported LLM models
|
||
llm_model_dict = {
|
||
"chatyuan": "ClueAI/ChatYuan-large-v2",
|
||
"chatglm-6b-int4-qe": "THUDM/chatglm-6b-int4-qe",
|
||
"chatglm-6b-int4": "THUDM/chatglm-6b-int4",
|
||
"chatglm-6b-int8": "THUDM/chatglm-6b-int8",
|
||
"chatglm-6b": "THUDM/chatglm-6b",
|
||
}
|
||
|
||
# LLM model name
|
||
LLM_MODEL = "chatglm-6b"
|
||
|
||
# LLM lora path,默认为空,如果有请直接指定文件夹路径
|
||
# 推荐使用 chatglm-6b-belle-zh-lora
|
||
LLM_LORA_PATH = ""
|
||
USE_LORA = True if LLM_LORA_PATH else False
|
||
|
||
# LLM streaming reponse
|
||
STREAMING = True
|
||
|
||
# Use p-tuning-v2 PrefixEncoder
|
||
USE_PTUNING_V2 = False
|
||
|
||
# LLM running device
|
||
LLM_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
||
|
||
VS_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "vector_store")
|
||
|
||
UPLOAD_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "content")
|
||
|
||
API_UPLOAD_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "api_content")
|
||
|
||
# 基于上下文的prompt模版,请务必保留"{question}"和"{context}"
|
||
PROMPT_TEMPLATE = """已知信息:
|
||
{context}
|
||
|
||
根据上述已知信息,简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。 问题是:{question}"""
|
||
|
||
# 匹配后单段上下文长度
|
||
CHUNK_SIZE = 250
|
||
|
||
# LLM input history length
|
||
LLM_HISTORY_LEN = 3
|
||
|
||
# return top-k text chunk from vector store
|
||
VECTOR_SEARCH_TOP_K = 5
|
||
|
||
NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data") |