Langchain-Chatchat/server/agent/weather.py

356 lines
11 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

## 使用和风天气API查询天气
from __future__ import annotations
import sys
import os
from server.utils import get_ChatOpenAI
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
import re
import warnings
from typing import Dict
from langchain.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.pydantic_v1 import Extra, root_validator
from langchain.schema import BasePromptTemplate
from langchain.schema.language_model import BaseLanguageModel
import requests
from typing import List, Any, Optional
from configs.model_config import LLM_MODEL, TEMPERATURE
def get_city_info(location, adm, key):
base_url = 'https://geoapi.qweather.com/v2/city/lookup?'
params = {'location': location, 'adm': adm, 'key': key}
response = requests.get(base_url, params=params)
data = response.json()
return data
from datetime import datetime
def format_weather_data(data):
hourly_forecast = data['hourly']
formatted_data = ''
for forecast in hourly_forecast:
# 将预报时间转换为datetime对象
forecast_time = datetime.strptime(forecast['fxTime'], '%Y-%m-%dT%H:%M%z')
# 获取预报时间的时区
forecast_tz = forecast_time.tzinfo
# 获取当前时间(使用预报时间的时区)
now = datetime.now(forecast_tz)
# 计算预报日期与当前日期的差值
days_diff = (forecast_time.date() - now.date()).days
if days_diff == 0:
forecast_date_str = '今天'
elif days_diff == 1:
forecast_date_str = '明天'
elif days_diff == 2:
forecast_date_str = '后天'
else:
forecast_date_str = str(days_diff) + '天后'
forecast_time_str = forecast_date_str + ' ' + forecast_time.strftime('%H:%M')
# 计算预报时间与当前时间的差值
time_diff = forecast_time - now
# 将差值转换为小时
hours_diff = time_diff.total_seconds() // 3600
if hours_diff < 1:
hours_diff_str = '1小时后'
elif hours_diff >= 24:
# 如果超过24小时转换为天数
days_diff = hours_diff // 24
hours_diff_str = str(int(days_diff)) + '天后'
else:
hours_diff_str = str(int(hours_diff)) + '小时后'
# 将预报时间和当前时间的差值添加到输出中
formatted_data += '预报时间: ' + hours_diff_str + '\n'
formatted_data += '具体时间: ' + forecast_time_str + '\n'
formatted_data += '温度: ' + forecast['temp'] + '°C\n'
formatted_data += '天气: ' + forecast['text'] + '\n'
formatted_data += '风向: ' + forecast['windDir'] + '\n'
formatted_data += '风速: ' + forecast['windSpeed'] + '\n'
formatted_data += '湿度: ' + forecast['humidity'] + '%\n'
formatted_data += '降水概率: ' + forecast['pop'] + '%\n'
# formatted_data += '降水量: ' + forecast['precip'] + 'mm\n'
formatted_data += '\n\n'
return formatted_data
def get_weather(key, location_id, time: str = "24"):
if time:
url = "https://devapi.qweather.com/v7/weather/" + time + "h?"
else:
time = "3" # 免费订阅只能查看3天的天气
url = "https://devapi.qweather.com/v7/weather/" + time + "d?"
params = {
'location': location_id,
'key': key,
}
response = requests.get(url, params=params)
data = response.json()
return format_weather_data(data)
def split_query(query):
parts = query.split()
location = parts[0] if parts[0] != 'None' else parts[1]
adm = parts[1]
time = parts[2]
return location, adm, time
def weather(query):
location, adm, time = split_query(query)
if time != "None" and int(time) > 24:
return "只能查看24小时内的天气无法回答"
if time == "None":
time = "24" # 免费的版本只能24小时内的天气
key = "315625cdca234137944d7f8956106a3e" # 和风天气API Key
if key == "":
return "请先在代码中填入和风天气API Key"
city_info = get_city_info(location=location, adm=adm, key=key)
location_id = city_info['location'][0]['id']
weather_data = get_weather(key=key, location_id=location_id, time=time)
return weather_data
class LLMWeatherChain(Chain):
llm_chain: LLMChain
llm: Optional[BaseLanguageModel] = None
"""[Deprecated] LLM wrapper to use."""
prompt: BasePromptTemplate
"""[Deprecated] Prompt to use to translate to python if necessary."""
input_key: str = "question" #: :meta private:
output_key: str = "answer" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def raise_deprecation(cls, values: Dict) -> Dict:
if "llm" in values:
warnings.warn(
"Directly instantiating an LLMWeatherChain with an llm is deprecated. "
"Please instantiate with llm_chain argument or using the from_llm "
"class method."
)
if "llm_chain" not in values and values["llm"] is not None:
prompt = values.get("prompt", PROMPT)
values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt)
return values
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Expect output key.
:meta private:
"""
return [self.output_key]
def _evaluate_expression(self, expression: str) -> str:
try:
output = weather(expression)
except Exception as e:
output = "输入的信息有误,请再次尝试"
# raise ValueError(f"错误: {expression},输入的信息不对")
return output
def _process_llm_result(
self, llm_output: str, run_manager: CallbackManagerForChainRun
) -> Dict[str, str]:
run_manager.on_text(llm_output, color="green", verbose=self.verbose)
llm_output = llm_output.strip()
text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL)
if text_match:
expression = text_match.group(1)
output = self._evaluate_expression(expression)
run_manager.on_text("\nAnswer: ", verbose=self.verbose)
run_manager.on_text(output, color="yellow", verbose=self.verbose)
answer = "Answer: " + output
elif llm_output.startswith("Answer:"):
answer = llm_output
elif "Answer:" in llm_output:
answer = "Answer: " + llm_output.split("Answer:")[-1]
else:
raise ValueError(f"unknown format from LLM: {llm_output}")
return {self.output_key: answer}
async def _aprocess_llm_result(
self,
llm_output: str,
run_manager: AsyncCallbackManagerForChainRun,
) -> Dict[str, str]:
await run_manager.on_text(llm_output, color="green", verbose=self.verbose)
llm_output = llm_output.strip()
text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL)
if text_match:
expression = text_match.group(1)
output = self._evaluate_expression(expression)
await run_manager.on_text("\nAnswer: ", verbose=self.verbose)
await run_manager.on_text(output, color="yellow", verbose=self.verbose)
answer = "Answer: " + output
elif llm_output.startswith("Answer:"):
answer = llm_output
elif "Answer:" in llm_output:
answer = "Answer: " + llm_output.split("Answer:")[-1]
else:
raise ValueError(f"unknown format from LLM: {llm_output}")
return {self.output_key: answer}
def _call(
self,
inputs: Dict[str, str],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
_run_manager.on_text(inputs[self.input_key])
llm_output = self.llm_chain.predict(
question=inputs[self.input_key],
stop=["```output"],
callbacks=_run_manager.get_child(),
)
return self._process_llm_result(llm_output, _run_manager)
async def _acall(
self,
inputs: Dict[str, str],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
await _run_manager.on_text(inputs[self.input_key])
llm_output = await self.llm_chain.apredict(
question=inputs[self.input_key],
stop=["```output"],
callbacks=_run_manager.get_child(),
)
return await self._aprocess_llm_result(llm_output, _run_manager)
@property
def _chain_type(self) -> str:
return "llm_weather_chain"
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
prompt: BasePromptTemplate,
**kwargs: Any,
) -> LLMWeatherChain:
llm_chain = LLMChain(llm=llm, prompt=prompt)
return cls(llm_chain=llm_chain, **kwargs)
from langchain import PromptTemplate
_PROMPT_TEMPLATE = """用户将会向您咨询天气问题,您不需要自己回答天气问题,而是将用户提问的信息提取出来区,市和时间三个元素后使用我为你编写好的工具进行查询并返回结果,格式为 区+市+时间 每个元素用空格隔开。如果缺少信息,则用 None 代替。
问题: ${{用户的问题}}
```text
${{拆分的区,市和时间}}
```
... weather(query)...
```output
${{提取后的答案}}
```
答案: ${{答案}}
这是两个例子:
问题: 上海浦东未来1小时天气情况
```text
浦东 上海 1
```
...weather(浦东 上海 1)...
```output
预报时间: 1小时后
具体时间: 今天 18:00
温度: 24°C
天气: 多云
风向: 西南风
风速: 7级
湿度: 88%
降水概率: 16%
Answer:
预报时间: 1小时后
具体时间: 今天 18:00
温度: 24°C
天气: 多云
风向: 西南风
风速: 7级
湿度: 88%
降水概率: 16%
问题: 北京市朝阳区未来24小时天气如何
```text
朝阳 北京 24
```
...weather(朝阳 北京 24)...
```output
预报时间: 23小时后
具体时间: 明天 17:00
温度: 26°C
天气: 霾
风向: 西南风
风速: 11级
湿度: 65%
降水概率: 20%
Answer:
预报时间: 23小时后
具体时间: 明天 17:00
温度: 26°C
天气: 霾
风向: 西南风
风速: 11级
湿度: 65%
降水概率: 20%
现在,这是我的问题:
问题: {question}
"""
PROMPT = PromptTemplate(
input_variables=["question"],
template=_PROMPT_TEMPLATE,
)
def weathercheck(query: str):
model = get_ChatOpenAI(
streaming=False,
model_name=LLM_MODEL,
temperature=TEMPERATURE,
)
llm_weather = LLMWeatherChain.from_llm(model, verbose=True, prompt=PROMPT)
ans = llm_weather.run(query)
return ans