356 lines
11 KiB
Python
356 lines
11 KiB
Python
## 使用和风天气API查询天气
|
||
|
||
from __future__ import annotations
|
||
import sys
|
||
import os
|
||
|
||
from server.utils import get_ChatOpenAI
|
||
|
||
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
||
|
||
import re
|
||
import warnings
|
||
from typing import Dict
|
||
|
||
from langchain.callbacks.manager import (
|
||
AsyncCallbackManagerForChainRun,
|
||
CallbackManagerForChainRun,
|
||
)
|
||
from langchain.chains.base import Chain
|
||
from langchain.chains.llm import LLMChain
|
||
from langchain.pydantic_v1 import Extra, root_validator
|
||
from langchain.schema import BasePromptTemplate
|
||
from langchain.schema.language_model import BaseLanguageModel
|
||
import requests
|
||
from typing import List, Any, Optional
|
||
from configs.model_config import LLM_MODEL, TEMPERATURE
|
||
|
||
|
||
def get_city_info(location, adm, key):
|
||
base_url = 'https://geoapi.qweather.com/v2/city/lookup?'
|
||
params = {'location': location, 'adm': adm, 'key': key}
|
||
response = requests.get(base_url, params=params)
|
||
data = response.json()
|
||
return data
|
||
|
||
|
||
from datetime import datetime
|
||
|
||
|
||
def format_weather_data(data):
|
||
hourly_forecast = data['hourly']
|
||
formatted_data = ''
|
||
for forecast in hourly_forecast:
|
||
# 将预报时间转换为datetime对象
|
||
forecast_time = datetime.strptime(forecast['fxTime'], '%Y-%m-%dT%H:%M%z')
|
||
# 获取预报时间的时区
|
||
forecast_tz = forecast_time.tzinfo
|
||
# 获取当前时间(使用预报时间的时区)
|
||
now = datetime.now(forecast_tz)
|
||
# 计算预报日期与当前日期的差值
|
||
days_diff = (forecast_time.date() - now.date()).days
|
||
if days_diff == 0:
|
||
forecast_date_str = '今天'
|
||
elif days_diff == 1:
|
||
forecast_date_str = '明天'
|
||
elif days_diff == 2:
|
||
forecast_date_str = '后天'
|
||
else:
|
||
forecast_date_str = str(days_diff) + '天后'
|
||
forecast_time_str = forecast_date_str + ' ' + forecast_time.strftime('%H:%M')
|
||
# 计算预报时间与当前时间的差值
|
||
time_diff = forecast_time - now
|
||
# 将差值转换为小时
|
||
hours_diff = time_diff.total_seconds() // 3600
|
||
if hours_diff < 1:
|
||
hours_diff_str = '1小时后'
|
||
elif hours_diff >= 24:
|
||
# 如果超过24小时,转换为天数
|
||
days_diff = hours_diff // 24
|
||
hours_diff_str = str(int(days_diff)) + '天后'
|
||
else:
|
||
hours_diff_str = str(int(hours_diff)) + '小时后'
|
||
# 将预报时间和当前时间的差值添加到输出中
|
||
formatted_data += '预报时间: ' + hours_diff_str + '\n'
|
||
formatted_data += '具体时间: ' + forecast_time_str + '\n'
|
||
formatted_data += '温度: ' + forecast['temp'] + '°C\n'
|
||
formatted_data += '天气: ' + forecast['text'] + '\n'
|
||
formatted_data += '风向: ' + forecast['windDir'] + '\n'
|
||
formatted_data += '风速: ' + forecast['windSpeed'] + '级\n'
|
||
formatted_data += '湿度: ' + forecast['humidity'] + '%\n'
|
||
formatted_data += '降水概率: ' + forecast['pop'] + '%\n'
|
||
# formatted_data += '降水量: ' + forecast['precip'] + 'mm\n'
|
||
formatted_data += '\n\n'
|
||
return formatted_data
|
||
|
||
|
||
def get_weather(key, location_id, time: str = "24"):
|
||
if time:
|
||
url = "https://devapi.qweather.com/v7/weather/" + time + "h?"
|
||
else:
|
||
time = "3" # 免费订阅只能查看3天的天气
|
||
url = "https://devapi.qweather.com/v7/weather/" + time + "d?"
|
||
params = {
|
||
'location': location_id,
|
||
'key': key,
|
||
}
|
||
response = requests.get(url, params=params)
|
||
data = response.json()
|
||
return format_weather_data(data)
|
||
|
||
|
||
def split_query(query):
|
||
parts = query.split()
|
||
location = parts[0] if parts[0] != 'None' else parts[1]
|
||
adm = parts[1]
|
||
time = parts[2]
|
||
return location, adm, time
|
||
|
||
|
||
def weather(query):
|
||
location, adm, time = split_query(query)
|
||
if time != "None" and int(time) > 24:
|
||
return "只能查看24小时内的天气,无法回答"
|
||
if time == "None":
|
||
time = "24" # 免费的版本只能24小时内的天气
|
||
key = "315625cdca234137944d7f8956106a3e" # 和风天气API Key
|
||
if key == "":
|
||
return "请先在代码中填入和风天气API Key"
|
||
city_info = get_city_info(location=location, adm=adm, key=key)
|
||
location_id = city_info['location'][0]['id']
|
||
weather_data = get_weather(key=key, location_id=location_id, time=time)
|
||
return weather_data
|
||
|
||
|
||
class LLMWeatherChain(Chain):
|
||
llm_chain: LLMChain
|
||
llm: Optional[BaseLanguageModel] = None
|
||
"""[Deprecated] LLM wrapper to use."""
|
||
prompt: BasePromptTemplate
|
||
"""[Deprecated] Prompt to use to translate to python if necessary."""
|
||
input_key: str = "question" #: :meta private:
|
||
output_key: str = "answer" #: :meta private:
|
||
|
||
class Config:
|
||
"""Configuration for this pydantic object."""
|
||
|
||
extra = Extra.forbid
|
||
arbitrary_types_allowed = True
|
||
|
||
@root_validator(pre=True)
|
||
def raise_deprecation(cls, values: Dict) -> Dict:
|
||
if "llm" in values:
|
||
warnings.warn(
|
||
"Directly instantiating an LLMWeatherChain with an llm is deprecated. "
|
||
"Please instantiate with llm_chain argument or using the from_llm "
|
||
"class method."
|
||
)
|
||
if "llm_chain" not in values and values["llm"] is not None:
|
||
prompt = values.get("prompt", PROMPT)
|
||
values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt)
|
||
return values
|
||
|
||
@property
|
||
def input_keys(self) -> List[str]:
|
||
"""Expect input key.
|
||
|
||
:meta private:
|
||
"""
|
||
return [self.input_key]
|
||
|
||
@property
|
||
def output_keys(self) -> List[str]:
|
||
"""Expect output key.
|
||
|
||
:meta private:
|
||
"""
|
||
return [self.output_key]
|
||
|
||
def _evaluate_expression(self, expression: str) -> str:
|
||
try:
|
||
output = weather(expression)
|
||
except Exception as e:
|
||
output = "输入的信息有误,请再次尝试"
|
||
# raise ValueError(f"错误: {expression},输入的信息不对")
|
||
|
||
return output
|
||
|
||
def _process_llm_result(
|
||
self, llm_output: str, run_manager: CallbackManagerForChainRun
|
||
) -> Dict[str, str]:
|
||
|
||
run_manager.on_text(llm_output, color="green", verbose=self.verbose)
|
||
|
||
llm_output = llm_output.strip()
|
||
text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL)
|
||
if text_match:
|
||
expression = text_match.group(1)
|
||
output = self._evaluate_expression(expression)
|
||
run_manager.on_text("\nAnswer: ", verbose=self.verbose)
|
||
run_manager.on_text(output, color="yellow", verbose=self.verbose)
|
||
answer = "Answer: " + output
|
||
elif llm_output.startswith("Answer:"):
|
||
answer = llm_output
|
||
elif "Answer:" in llm_output:
|
||
answer = "Answer: " + llm_output.split("Answer:")[-1]
|
||
else:
|
||
raise ValueError(f"unknown format from LLM: {llm_output}")
|
||
return {self.output_key: answer}
|
||
|
||
async def _aprocess_llm_result(
|
||
self,
|
||
llm_output: str,
|
||
run_manager: AsyncCallbackManagerForChainRun,
|
||
) -> Dict[str, str]:
|
||
await run_manager.on_text(llm_output, color="green", verbose=self.verbose)
|
||
llm_output = llm_output.strip()
|
||
text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL)
|
||
if text_match:
|
||
expression = text_match.group(1)
|
||
output = self._evaluate_expression(expression)
|
||
await run_manager.on_text("\nAnswer: ", verbose=self.verbose)
|
||
await run_manager.on_text(output, color="yellow", verbose=self.verbose)
|
||
answer = "Answer: " + output
|
||
elif llm_output.startswith("Answer:"):
|
||
answer = llm_output
|
||
elif "Answer:" in llm_output:
|
||
answer = "Answer: " + llm_output.split("Answer:")[-1]
|
||
else:
|
||
raise ValueError(f"unknown format from LLM: {llm_output}")
|
||
return {self.output_key: answer}
|
||
|
||
def _call(
|
||
self,
|
||
inputs: Dict[str, str],
|
||
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||
) -> Dict[str, str]:
|
||
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
||
_run_manager.on_text(inputs[self.input_key])
|
||
llm_output = self.llm_chain.predict(
|
||
question=inputs[self.input_key],
|
||
stop=["```output"],
|
||
callbacks=_run_manager.get_child(),
|
||
)
|
||
return self._process_llm_result(llm_output, _run_manager)
|
||
|
||
async def _acall(
|
||
self,
|
||
inputs: Dict[str, str],
|
||
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
|
||
) -> Dict[str, str]:
|
||
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
|
||
await _run_manager.on_text(inputs[self.input_key])
|
||
llm_output = await self.llm_chain.apredict(
|
||
question=inputs[self.input_key],
|
||
stop=["```output"],
|
||
callbacks=_run_manager.get_child(),
|
||
)
|
||
return await self._aprocess_llm_result(llm_output, _run_manager)
|
||
|
||
@property
|
||
def _chain_type(self) -> str:
|
||
return "llm_weather_chain"
|
||
|
||
@classmethod
|
||
def from_llm(
|
||
cls,
|
||
llm: BaseLanguageModel,
|
||
prompt: BasePromptTemplate,
|
||
**kwargs: Any,
|
||
) -> LLMWeatherChain:
|
||
llm_chain = LLMChain(llm=llm, prompt=prompt)
|
||
return cls(llm_chain=llm_chain, **kwargs)
|
||
|
||
|
||
from langchain import PromptTemplate
|
||
|
||
_PROMPT_TEMPLATE = """用户将会向您咨询天气问题,您不需要自己回答天气问题,而是将用户提问的信息提取出来区,市和时间三个元素后使用我为你编写好的工具进行查询并返回结果,格式为 区+市+时间 每个元素用空格隔开。如果缺少信息,则用 None 代替。
|
||
问题: ${{用户的问题}}
|
||
|
||
```text
|
||
|
||
${{拆分的区,市和时间}}
|
||
```
|
||
|
||
... weather(query)...
|
||
```output
|
||
|
||
${{提取后的答案}}
|
||
```
|
||
答案: ${{答案}}
|
||
|
||
这是两个例子:
|
||
问题: 上海浦东未来1小时天气情况?
|
||
|
||
```text
|
||
|
||
浦东 上海 1
|
||
```
|
||
...weather(浦东 上海 1)...
|
||
|
||
```output
|
||
|
||
预报时间: 1小时后
|
||
具体时间: 今天 18:00
|
||
温度: 24°C
|
||
天气: 多云
|
||
风向: 西南风
|
||
风速: 7级
|
||
湿度: 88%
|
||
降水概率: 16%
|
||
|
||
Answer:
|
||
预报时间: 1小时后
|
||
具体时间: 今天 18:00
|
||
温度: 24°C
|
||
天气: 多云
|
||
风向: 西南风
|
||
风速: 7级
|
||
湿度: 88%
|
||
降水概率: 16%
|
||
|
||
问题: 北京市朝阳区未来24小时天气如何?
|
||
```text
|
||
|
||
朝阳 北京 24
|
||
```
|
||
...weather(朝阳 北京 24)...
|
||
```output
|
||
预报时间: 23小时后
|
||
具体时间: 明天 17:00
|
||
温度: 26°C
|
||
天气: 霾
|
||
风向: 西南风
|
||
风速: 11级
|
||
湿度: 65%
|
||
降水概率: 20%
|
||
Answer:
|
||
预报时间: 23小时后
|
||
具体时间: 明天 17:00
|
||
温度: 26°C
|
||
天气: 霾
|
||
风向: 西南风
|
||
风速: 11级
|
||
湿度: 65%
|
||
降水概率: 20%
|
||
|
||
现在,这是我的问题:
|
||
问题: {question}
|
||
"""
|
||
PROMPT = PromptTemplate(
|
||
input_variables=["question"],
|
||
template=_PROMPT_TEMPLATE,
|
||
)
|
||
|
||
|
||
def weathercheck(query: str):
|
||
model = get_ChatOpenAI(
|
||
streaming=False,
|
||
model_name=LLM_MODEL,
|
||
temperature=TEMPERATURE,
|
||
)
|
||
llm_weather = LLMWeatherChain.from_llm(model, verbose=True, prompt=PROMPT)
|
||
ans = llm_weather.run(query)
|
||
return ans
|
||
|