1、自动读取knowledge_based_chatglm.py中LLM及embedding模型枚举,选择后点击setting进行模型加载,可随时切换模型进行测试 2、可手动调节保留对话历史长度,可根据显存大小自行调节 3、添加上传文件功能,通过下拉框选择已上传的文件,点击loading加载文件,过程中可随时更换加载的文件 4、底部添加use via API可对接到自己系统 TODO: 1、添加模型加载进度条 2、添加输出内容及错误提示 3、国家化语言切换 4、引用标注 5、添加插件系统(可基础lora训练等) |
||
|---|---|---|
| content | ||
| LICENSE | ||
| README.md | ||
| README_en.md | ||
| chatglm_llm.py | ||
| knowledge_based_chatglm.py | ||
| requirements.txt | ||
| webui.py | ||
README_en.md
ChatGLM Application Based on Local Knowledge
Introduction
🌍 中文文档
🤖️ A local knowledge based LLM Application with ChatGLM-6B and langchain.
💡 Inspired by document.ai by GanymedeNil and ChatGLM-6B Pull Request by AlexZhangji.
✅ In this project, GanymedeNil/text2vec-large-chinese is used as Embedding Model,and ChatGLM-6B used as LLM。Based on those models,this project can be deployed offline with all open source models。
Update
[2023/04/07]
- Fix bug which costs twice gpu memory (Thanks to @suc16 and @myml).
- Add gpu memory clear function after each call of ChatGLM.
- Add
nghuyong/ernie-3.0-nano-zhandnghuyong/ernie-3.0-base-zhas Embedding model alternatives,costing less gpu thanGanymedeNil/text2vec-large-chinese(Thanks to @lastrei)
[2023/04/09]
- Using
RetrievalQAinlangchainto replace the previously selectedChatVectorDBChain, the replacement can effectively solve the problem of program stopping after 2-3 questions due to insufficient gpu memory. - Add
EMBEDDING_MODEL,VECTOR_SEARCH_TOP_K,LLM_MODEL,LLM_HISTORY_LEN,REPLY_WITH_SOURCEparameter value settings inknowledge_based_chatglm.py. - Add
chatglm-6b-int4,chatglm-6b-int4-qewith smaller GPU memory requirements as LLM model alternatives. - Correct code errors in
README.md(Thanks to @calcitem).
Usage
Hardware Requirements
-
ChatGLM Hardware Requirements
Quantization Level GPU Memory FP16(no quantization) 13 GB INT8 10 GB INT4 6 GB -
Embedding Hardware Requirements
The default Embedding model in this repo is GanymedeNil/text2vec-large-chinese, 3GB GPU Memory required when running on GPU.
Software Requirements
This repo has been tested in python 3.8 environment。
1. install python packages
pip install -r requirements.txt
Attention: With langchain.document_loaders.UnstructuredFileLoader used to connect with local knowledge file, you may need some other dependencies as mentioned in langchain documentation
2. Run knowledge_based_chatglm.py script
python knowledge_based_chatglm.py
Known issues
- Currently tested to support txt, docx, md format files, for more file formats please refer to langchain documentation. If the document contains special characters, the file may not be correctly loaded.
- When running this project with macOS, it may not work properly due to incompatibility with pytorch caused by macOS version 13.3 and above.
FAQ
Q: How to solve Resource punkt not found.?
A: Unzip packages/tokenizers in https://github.com/nltk/nltk_data/raw/gh-pages/packages/tokenizers/punkt.zip and put it in the corresponding directory of Searched in:.
Q: How to solve Resource averaged_perceptron_tagger not found.?
A: Download https://github.com/nltk/nltk_data/blob/gh-pages/packages/taggers/averaged_perceptron_tagger.zip, decompress it and put it in the corresponding directory of Searched in:.
Roadmap
- local knowledge based application with langchain + ChatGLM-6B
- unstructured files loaded with langchain
- more different file format loaded with langchain
- implement web ui DEMO with gradio/streamlit
- implement API with fastapi,and web ui DEMO with API