Langchain-Chatchat/chatglm_llm.py

64 lines
1.7 KiB
Python

from langchain.llms.base import LLM
from typing import Optional, List
from langchain.llms.utils import enforce_stop_tokens
from transformers import AutoTokenizer, AutoModel
import torch
DEVICE = "cuda"
DEVICE_ID = "0"
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
def torch_gc():
if torch.cuda.is_available():
with torch.cuda.device(CUDA_DEVICE):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
class ChatGLM(LLM):
max_token: int = 10000
temperature: float = 0.1
top_p = 0.9
history = []
tokenizer: object = None
model: object = None
history_len: int = 10
def __init__(self):
super().__init__()
@property
def _llm_type(self) -> str:
return "ChatGLM"
def _call(self,
prompt: str,
stop: Optional[List[str]] = None) -> str:
response, _ = self.model.chat(
self.tokenizer,
prompt,
history=self.history[-self.history_len:],
max_length=self.max_token,
temperature=self.temperature,
)
torch_gc()
if stop is not None:
response = enforce_stop_tokens(response, stop)
self.history = self.history+[[None, response]]
return response
def load_model(self,
model_name_or_path: str = "THUDM/chatglm-6b"):
self.tokenizer = AutoTokenizer.from_pretrained(
model_name_or_path,
trust_remote_code=True
)
self.model = (
AutoModel.from_pretrained(
model_name_or_path,
trust_remote_code=True)
.half()
.cuda()
)