107 lines
3.5 KiB
Python
107 lines
3.5 KiB
Python
from fastchat.conversation import Conversation
|
||
from server.model_workers.base import *
|
||
from fastchat import conversation as conv
|
||
import sys
|
||
from typing import List, Dict, Iterator, Literal
|
||
from configs import logger, log_verbose
|
||
import requests
|
||
import jwt
|
||
import time
|
||
import json
|
||
|
||
|
||
def generate_token(apikey: str, exp_seconds: int):
|
||
try:
|
||
id, secret = apikey.split(".")
|
||
except Exception as e:
|
||
raise Exception("invalid apikey", e)
|
||
|
||
payload = {
|
||
"api_key": id,
|
||
"exp": int(round(time.time() * 1000)) + exp_seconds * 1000,
|
||
"timestamp": int(round(time.time() * 1000)),
|
||
}
|
||
|
||
return jwt.encode(
|
||
payload,
|
||
secret,
|
||
algorithm="HS256",
|
||
headers={"alg": "HS256", "sign_type": "SIGN"},
|
||
)
|
||
|
||
|
||
class ChatGLMWorker(ApiModelWorker):
|
||
def __init__(
|
||
self,
|
||
*,
|
||
model_names: List[str] = ["zhipu-api"],
|
||
controller_addr: str = None,
|
||
worker_addr: str = None,
|
||
version: Literal["chatglm_turbo"] = "chatglm_turbo",
|
||
**kwargs,
|
||
):
|
||
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
|
||
kwargs.setdefault("context_len", 4096)
|
||
super().__init__(**kwargs)
|
||
self.version = version
|
||
|
||
def do_chat(self, params: ApiChatParams) -> Iterator[Dict]:
|
||
params.load_config(self.model_names[0])
|
||
token = generate_token(params.api_key, 60)
|
||
headers = {
|
||
"Content-Type": "application/json",
|
||
"Authorization": f"Bearer {token}"
|
||
}
|
||
data = {
|
||
"model": params.version,
|
||
"messages": params.messages,
|
||
"max_tokens": params.max_tokens,
|
||
"temperature": params.temperature,
|
||
"stream": False
|
||
}
|
||
url = "https://open.bigmodel.cn/api/paas/v4/chat/completions"
|
||
response = requests.post(url, headers=headers, json=data)
|
||
# for chunk in response.iter_lines():
|
||
# if chunk:
|
||
# chunk_str = chunk.decode('utf-8')
|
||
# json_start_pos = chunk_str.find('{"id"')
|
||
# if json_start_pos != -1:
|
||
# json_str = chunk_str[json_start_pos:]
|
||
# json_data = json.loads(json_str)
|
||
# for choice in json_data.get('choices', []):
|
||
# delta = choice.get('delta', {})
|
||
# content = delta.get('content', '')
|
||
# yield {"error_code": 0, "text": content}
|
||
ans = response.json()
|
||
content = ans["choices"][0]["message"]["content"]
|
||
yield {"error_code": 0, "text": content}
|
||
|
||
def get_embeddings(self, params):
|
||
# 临时解决方案,不支持embedding
|
||
print("embedding")
|
||
print(params)
|
||
|
||
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
|
||
return conv.Conversation(
|
||
name=self.model_names[0],
|
||
system_message="你是智谱AI小助手,请根据用户的提示来完成任务",
|
||
messages=[],
|
||
roles=["user", "assistant", "system"],
|
||
sep="\n###",
|
||
stop_str="###",
|
||
)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
import uvicorn
|
||
from server.utils import MakeFastAPIOffline
|
||
from fastchat.serve.model_worker import app
|
||
|
||
worker = ChatGLMWorker(
|
||
controller_addr="http://127.0.0.1:20001",
|
||
worker_addr="http://127.0.0.1:21001",
|
||
)
|
||
sys.modules["fastchat.serve.model_worker"].worker = worker
|
||
MakeFastAPIOffline(app)
|
||
uvicorn.run(app, port=21001)
|