1076 lines
35 KiB
Python
1076 lines
35 KiB
Python
# 该文件封装了对api.py的请求,可以被不同的webui使用
|
||
# 通过ApiRequest和AsyncApiRequest支持同步/异步调用
|
||
|
||
from typing import *
|
||
from pathlib import Path
|
||
# 此处导入的配置为发起请求(如WEBUI)机器上的配置,主要用于为前端设置默认值。分布式部署时可以与服务器上的不同
|
||
from configs import (
|
||
EMBEDDING_MODEL,
|
||
DEFAULT_VS_TYPE,
|
||
LLM_MODELS,
|
||
TEMPERATURE,
|
||
SCORE_THRESHOLD,
|
||
CHUNK_SIZE,
|
||
OVERLAP_SIZE,
|
||
ZH_TITLE_ENHANCE,
|
||
FIRST_VECTOR_SEARCH_TOP_K,
|
||
VECTOR_SEARCH_TOP_K,
|
||
SEARCH_ENGINE_TOP_K,
|
||
HTTPX_DEFAULT_TIMEOUT,
|
||
logger, log_verbose,
|
||
)
|
||
import httpx
|
||
import contextlib
|
||
import json
|
||
import os
|
||
from io import BytesIO
|
||
from server.utils import set_httpx_config, api_address, get_httpx_client
|
||
|
||
from pprint import pprint
|
||
from langchain_core._api import deprecated
|
||
|
||
set_httpx_config()
|
||
|
||
|
||
class ApiRequest:
|
||
'''
|
||
api.py调用的封装(同步模式),简化api调用方式
|
||
'''
|
||
|
||
def __init__(
|
||
self,
|
||
base_url: str = api_address(),
|
||
timeout: float = HTTPX_DEFAULT_TIMEOUT,
|
||
):
|
||
self.base_url = base_url
|
||
self.timeout = timeout
|
||
self._use_async = False
|
||
self._client = None
|
||
|
||
@property
|
||
def client(self):
|
||
if self._client is None or self._client.is_closed:
|
||
self._client = get_httpx_client(base_url=self.base_url,
|
||
use_async=self._use_async,
|
||
timeout=self.timeout)
|
||
return self._client
|
||
|
||
def get(
|
||
self,
|
||
url: str,
|
||
params: Union[Dict, List[Tuple], bytes] = None,
|
||
retry: int = 3,
|
||
stream: bool = False,
|
||
**kwargs: Any,
|
||
) -> Union[httpx.Response, Iterator[httpx.Response], None]:
|
||
while retry > 0:
|
||
try:
|
||
if stream:
|
||
return self.client.stream("GET", url, params=params, **kwargs)
|
||
else:
|
||
return self.client.get(url, params=params, **kwargs)
|
||
except Exception as e:
|
||
msg = f"error when get {url}: {e}"
|
||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||
exc_info=e if log_verbose else None)
|
||
retry -= 1
|
||
|
||
def post(
|
||
self,
|
||
url: str,
|
||
data: Dict = None,
|
||
json: Dict = None,
|
||
retry: int = 3,
|
||
stream: bool = False,
|
||
**kwargs: Any
|
||
) -> Union[httpx.Response, Iterator[httpx.Response], None]:
|
||
while retry > 0:
|
||
try:
|
||
# print(kwargs)
|
||
if stream:
|
||
return self.client.stream("POST", url, data=data, json=json, **kwargs)
|
||
else:
|
||
return self.client.post(url, data=data, json=json, **kwargs)
|
||
except Exception as e:
|
||
msg = f"error when post {url}: {e}"
|
||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||
exc_info=e if log_verbose else None)
|
||
retry -= 1
|
||
|
||
def delete(
|
||
self,
|
||
url: str,
|
||
data: Dict = None,
|
||
json: Dict = None,
|
||
retry: int = 3,
|
||
stream: bool = False,
|
||
**kwargs: Any
|
||
) -> Union[httpx.Response, Iterator[httpx.Response], None]:
|
||
while retry > 0:
|
||
try:
|
||
if stream:
|
||
return self.client.stream("DELETE", url, data=data, json=json, **kwargs)
|
||
else:
|
||
return self.client.delete(url, data=data, json=json, **kwargs)
|
||
except Exception as e:
|
||
msg = f"error when delete {url}: {e}"
|
||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||
exc_info=e if log_verbose else None)
|
||
retry -= 1
|
||
|
||
def _httpx_stream2generator(
|
||
self,
|
||
response: contextlib._GeneratorContextManager,
|
||
as_json: bool = False,
|
||
):
|
||
'''
|
||
将httpx.stream返回的GeneratorContextManager转化为普通生成器
|
||
'''
|
||
|
||
async def ret_async(response, as_json):
|
||
try:
|
||
async with response as r:
|
||
async for chunk in r.aiter_text(None):
|
||
if not chunk: # fastchat api yield empty bytes on start and end
|
||
continue
|
||
if as_json:
|
||
try:
|
||
if chunk.startswith("data: "):
|
||
data = json.loads(chunk[6:-2])
|
||
elif chunk.startswith(":"): # skip sse comment line
|
||
continue
|
||
else:
|
||
data = json.loads(chunk)
|
||
yield data
|
||
except Exception as e:
|
||
msg = f"接口返回json错误: ‘{chunk}’。错误信息是:{e}。"
|
||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||
exc_info=e if log_verbose else None)
|
||
else:
|
||
# print(chunk, end="", flush=True)
|
||
yield chunk
|
||
except httpx.ConnectError as e:
|
||
msg = f"无法连接API服务器,请确认 ‘api.py’ 已正常启动。({e})"
|
||
logger.error(msg)
|
||
yield {"code": 500, "msg": msg}
|
||
except httpx.ReadTimeout as e:
|
||
msg = f"API通信超时,请确认已启动FastChat与API服务(详见Wiki '5. 启动 API 服务或 Web UI')。({e})"
|
||
logger.error(msg)
|
||
yield {"code": 500, "msg": msg}
|
||
except Exception as e:
|
||
msg = f"API通信遇到错误:{e}"
|
||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||
exc_info=e if log_verbose else None)
|
||
yield {"code": 500, "msg": msg}
|
||
|
||
def ret_sync(response, as_json):
|
||
try:
|
||
with response as r:
|
||
for chunk in r.iter_text(None):
|
||
if not chunk: # fastchat api yield empty bytes on start and end
|
||
continue
|
||
if as_json:
|
||
try:
|
||
if chunk.startswith("data: "):
|
||
data = json.loads(chunk[6:-2])
|
||
elif chunk.startswith(":"): # skip sse comment line
|
||
continue
|
||
else:
|
||
data = json.loads(chunk)
|
||
yield data
|
||
except Exception as e:
|
||
msg = f"接口返回json错误: ‘{chunk}’。错误信息是:{e}。"
|
||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||
exc_info=e if log_verbose else None)
|
||
else:
|
||
# print(chunk, end="", flush=True)
|
||
yield chunk
|
||
except httpx.ConnectError as e:
|
||
msg = f"无法连接API服务器,请确认 ‘api.py’ 已正常启动。({e})"
|
||
logger.error(msg)
|
||
yield {"code": 500, "msg": msg}
|
||
except httpx.ReadTimeout as e:
|
||
msg = f"API通信超时,请确认已启动FastChat与API服务(详见Wiki '5. 启动 API 服务或 Web UI')。({e})"
|
||
logger.error(msg)
|
||
yield {"code": 500, "msg": msg}
|
||
except Exception as e:
|
||
msg = f"API通信遇到错误:{e}"
|
||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||
exc_info=e if log_verbose else None)
|
||
yield {"code": 500, "msg": msg}
|
||
|
||
if self._use_async:
|
||
return ret_async(response, as_json)
|
||
else:
|
||
return ret_sync(response, as_json)
|
||
|
||
def _get_response_value(
|
||
self,
|
||
response: httpx.Response,
|
||
as_json: bool = False,
|
||
value_func: Callable = None,
|
||
):
|
||
'''
|
||
转换同步或异步请求返回的响应
|
||
`as_json`: 返回json
|
||
`value_func`: 用户可以自定义返回值,该函数接受response或json
|
||
'''
|
||
|
||
def to_json(r):
|
||
try:
|
||
return r.json()
|
||
except Exception as e:
|
||
msg = "API未能返回正确的JSON。" + str(e)
|
||
if log_verbose:
|
||
logger.error(f'{e.__class__.__name__}: {msg}',
|
||
exc_info=e if log_verbose else None)
|
||
return {"code": 500, "msg": msg, "data": None}
|
||
|
||
if value_func is None:
|
||
value_func = (lambda r: r)
|
||
|
||
async def ret_async(response):
|
||
if as_json:
|
||
return value_func(to_json(await response))
|
||
else:
|
||
return value_func(await response)
|
||
|
||
if self._use_async:
|
||
return ret_async(response)
|
||
else:
|
||
if as_json:
|
||
return value_func(to_json(response))
|
||
else:
|
||
return value_func(response)
|
||
|
||
# 服务器信息
|
||
def get_server_configs(self, **kwargs) -> Dict:
|
||
response = self.post("/server/configs", **kwargs)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def list_search_engines(self, **kwargs) -> List:
|
||
response = self.post("/server/list_search_engines", **kwargs)
|
||
return self._get_response_value(response, as_json=True, value_func=lambda r: r["data"])
|
||
|
||
def get_prompt_template(
|
||
self,
|
||
type: str = "llm_chat",
|
||
name: str = "default",
|
||
**kwargs,
|
||
) -> str:
|
||
data = {
|
||
"type": type,
|
||
"name": name,
|
||
}
|
||
response = self.post("/server/get_prompt_template", json=data, **kwargs)
|
||
return self._get_response_value(response, value_func=lambda r: r.text)
|
||
|
||
# 对话相关操作
|
||
def chat_chat(
|
||
self,
|
||
query: str,
|
||
conversation_id: str = None,
|
||
history_len: int = -1,
|
||
history: List[Dict] = [],
|
||
stream: bool = True,
|
||
model: str = LLM_MODELS[0],
|
||
temperature: float = TEMPERATURE,
|
||
max_tokens: int = None,
|
||
prompt_name: str = "default",
|
||
**kwargs,
|
||
):
|
||
'''
|
||
对应api.py/chat/chat接口
|
||
'''
|
||
data = {
|
||
"query": query,
|
||
"conversation_id": conversation_id,
|
||
"history_len": history_len,
|
||
"history": history,
|
||
"stream": stream,
|
||
"model_name": model,
|
||
"temperature": temperature,
|
||
"max_tokens": max_tokens,
|
||
"prompt_name": prompt_name,
|
||
}
|
||
|
||
# print(f"received input message:")
|
||
# pprint(data)
|
||
|
||
response = self.post("/chat/chat", json=data, stream=True, **kwargs)
|
||
return self._httpx_stream2generator(response, as_json=True)
|
||
|
||
@deprecated(
|
||
since="0.3.0",
|
||
message="自定义Agent问答将于 Langchain-Chatchat 0.3.x重写, 0.2.x中相关功能将废弃",
|
||
removal="0.3.0")
|
||
def agent_chat(
|
||
self,
|
||
query: str,
|
||
history: List[Dict] = [],
|
||
stream: bool = True,
|
||
model: str = LLM_MODELS[0],
|
||
temperature: float = TEMPERATURE,
|
||
max_tokens: int = None,
|
||
prompt_name: str = "default",
|
||
):
|
||
'''
|
||
对应api.py/chat/agent_chat 接口
|
||
'''
|
||
data = {
|
||
"query": query,
|
||
"history": history,
|
||
"stream": stream,
|
||
"model_name": model,
|
||
"temperature": temperature,
|
||
"max_tokens": max_tokens,
|
||
"prompt_name": prompt_name,
|
||
}
|
||
|
||
# print(f"received input message:")
|
||
# pprint(data)
|
||
|
||
response = self.post("/chat/agent_chat", json=data, stream=True)
|
||
return self._httpx_stream2generator(response, as_json=True)
|
||
|
||
def knowledge_base_chat(
|
||
self,
|
||
query: str,
|
||
knowledge_base_name: str,
|
||
top_k: int = VECTOR_SEARCH_TOP_K,
|
||
score_threshold: float = SCORE_THRESHOLD,
|
||
history: List[Dict] = [],
|
||
stream: bool = True,
|
||
model: str = LLM_MODELS[0],
|
||
temperature: float = TEMPERATURE,
|
||
max_tokens: int = None,
|
||
prompt_name: str = "default",
|
||
):
|
||
'''
|
||
对应api.py/chat/knowledge_base_chat接口
|
||
'''
|
||
data = {
|
||
"query": query,
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"top_k": top_k,
|
||
"score_threshold": score_threshold,
|
||
"history": history,
|
||
"stream": stream,
|
||
"model_name": model,
|
||
"temperature": temperature,
|
||
"max_tokens": max_tokens,
|
||
"prompt_name": prompt_name,
|
||
}
|
||
|
||
# print(f"received input message:")
|
||
# pprint(data)
|
||
|
||
response = self.post(
|
||
"/chat/knowledge_base_chat",
|
||
json=data,
|
||
stream=True,
|
||
)
|
||
return self._httpx_stream2generator(response, as_json=True)
|
||
|
||
def upload_temp_docs(
|
||
self,
|
||
files: List[Union[str, Path, bytes]],
|
||
knowledge_id: str = None,
|
||
chunk_size=CHUNK_SIZE,
|
||
chunk_overlap=OVERLAP_SIZE,
|
||
zh_title_enhance=ZH_TITLE_ENHANCE,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/upload_tmep_docs接口
|
||
'''
|
||
|
||
def convert_file(file, filename=None):
|
||
if isinstance(file, bytes): # raw bytes
|
||
file = BytesIO(file)
|
||
elif hasattr(file, "read"): # a file io like object
|
||
filename = filename or file.name
|
||
else: # a local path
|
||
file = Path(file).absolute().open("rb")
|
||
filename = filename or os.path.split(file.name)[-1]
|
||
return filename, file
|
||
|
||
files = [convert_file(file) for file in files]
|
||
data = {
|
||
"knowledge_id": knowledge_id,
|
||
"chunk_size": chunk_size,
|
||
"chunk_overlap": chunk_overlap,
|
||
"zh_title_enhance": zh_title_enhance,
|
||
}
|
||
|
||
response = self.post(
|
||
"/knowledge_base/upload_temp_docs",
|
||
data=data,
|
||
files=[("files", (filename, file)) for filename, file in files],
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def file_chat(
|
||
self,
|
||
query: str,
|
||
knowledge_id: str,
|
||
top_k: int = VECTOR_SEARCH_TOP_K,
|
||
score_threshold: float = SCORE_THRESHOLD,
|
||
history: List[Dict] = [],
|
||
stream: bool = True,
|
||
model: str = LLM_MODELS[0],
|
||
temperature: float = TEMPERATURE,
|
||
max_tokens: int = None,
|
||
prompt_name: str = "default",
|
||
):
|
||
'''
|
||
对应api.py/chat/file_chat接口
|
||
'''
|
||
data = {
|
||
"query": query,
|
||
"knowledge_id": knowledge_id,
|
||
"top_k": top_k,
|
||
"score_threshold": score_threshold,
|
||
"history": history,
|
||
"stream": stream,
|
||
"model_name": model,
|
||
"temperature": temperature,
|
||
"max_tokens": max_tokens,
|
||
"prompt_name": prompt_name,
|
||
}
|
||
|
||
response = self.post(
|
||
"/chat/file_chat",
|
||
json=data,
|
||
stream=True,
|
||
)
|
||
return self._httpx_stream2generator(response, as_json=True)
|
||
|
||
@deprecated(
|
||
since="0.3.0",
|
||
message="搜索引擎问答将于 Langchain-Chatchat 0.3.x重写, 0.2.x中相关功能将废弃",
|
||
removal="0.3.0"
|
||
)
|
||
def search_engine_chat(
|
||
self,
|
||
query: str,
|
||
search_engine_name: str,
|
||
top_k: int = SEARCH_ENGINE_TOP_K,
|
||
history: List[Dict] = [],
|
||
stream: bool = True,
|
||
model: str = LLM_MODELS[0],
|
||
temperature: float = TEMPERATURE,
|
||
max_tokens: int = None,
|
||
prompt_name: str = "default",
|
||
split_result: bool = False,
|
||
):
|
||
'''
|
||
对应api.py/chat/search_engine_chat接口
|
||
'''
|
||
data = {
|
||
"query": query,
|
||
"search_engine_name": search_engine_name,
|
||
"top_k": top_k,
|
||
"history": history,
|
||
"stream": stream,
|
||
"model_name": model,
|
||
"temperature": temperature,
|
||
"max_tokens": max_tokens,
|
||
"prompt_name": prompt_name,
|
||
"split_result": split_result,
|
||
}
|
||
|
||
# print(f"received input message:")
|
||
# pprint(data)
|
||
|
||
response = self.post(
|
||
"/chat/search_engine_chat",
|
||
json=data,
|
||
stream=True,
|
||
)
|
||
return self._httpx_stream2generator(response, as_json=True)
|
||
|
||
# 知识库相关操作
|
||
|
||
def list_knowledge_bases(
|
||
self,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/list_knowledge_bases接口
|
||
'''
|
||
response = self.get("/knowledge_base/list_knowledge_bases")
|
||
return self._get_response_value(response,
|
||
as_json=True,
|
||
value_func=lambda r: r.get("data", []))
|
||
|
||
def create_knowledge_base(
|
||
self,
|
||
knowledge_base_name: str,
|
||
vector_store_type: str = DEFAULT_VS_TYPE,
|
||
embed_model: str = EMBEDDING_MODEL,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/create_knowledge_base接口
|
||
'''
|
||
data = {
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"vector_store_type": vector_store_type,
|
||
"embed_model": embed_model,
|
||
}
|
||
|
||
response = self.post(
|
||
"/knowledge_base/create_knowledge_base",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def delete_knowledge_base(
|
||
self,
|
||
knowledge_base_name: str,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/delete_knowledge_base接口
|
||
'''
|
||
response = self.post(
|
||
"/knowledge_base/delete_knowledge_base",
|
||
json=f"{knowledge_base_name}",
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def list_kb_docs(
|
||
self,
|
||
knowledge_base_name: str,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/list_files接口
|
||
'''
|
||
response = self.get(
|
||
"/knowledge_base/list_files",
|
||
params={"knowledge_base_name": knowledge_base_name}
|
||
)
|
||
return self._get_response_value(response,
|
||
as_json=True,
|
||
value_func=lambda r: r.get("data", []))
|
||
|
||
def search_kb_docs(
|
||
self,
|
||
knowledge_base_name: str,
|
||
query: str = "",
|
||
top_k: int = VECTOR_SEARCH_TOP_K,
|
||
score_threshold: int = SCORE_THRESHOLD,
|
||
file_name: str = "",
|
||
metadata: dict = {},
|
||
) -> List:
|
||
'''
|
||
对应api.py/knowledge_base/search_docs接口
|
||
'''
|
||
data = {
|
||
"query": query,
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"top_k": top_k,
|
||
"score_threshold": score_threshold,
|
||
"file_name": file_name,
|
||
"metadata": metadata,
|
||
}
|
||
|
||
response = self.post(
|
||
"/knowledge_base/search_docs",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def update_docs_by_id(
|
||
self,
|
||
knowledge_base_name: str,
|
||
docs: Dict[str, Dict],
|
||
) -> bool:
|
||
'''
|
||
对应api.py/knowledge_base/update_docs_by_id接口
|
||
'''
|
||
data = {
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"docs": docs,
|
||
}
|
||
response = self.post(
|
||
"/knowledge_base/update_docs_by_id",
|
||
json=data
|
||
)
|
||
return self._get_response_value(response)
|
||
|
||
def delete_docs_by_ids(
|
||
self,
|
||
knowledge_base_name: str,
|
||
file_name:str,
|
||
ids: list[str],
|
||
) -> bool:
|
||
'''
|
||
对应api.py/knowledge_base/delete_doc_by_ids接口
|
||
'''
|
||
data = {
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"file_name":file_name,
|
||
"ids": ids,
|
||
}
|
||
response = self.post(
|
||
"/knowledge_base/delete_docs_by_ids",
|
||
json=data
|
||
)
|
||
return self._get_response_value(response)
|
||
|
||
def upload_kb_docs(
|
||
self,
|
||
files: List[Union[str, Path, bytes]],
|
||
knowledge_base_name: str,
|
||
override: bool = False,
|
||
to_vector_store: bool = True,
|
||
chunk_size=CHUNK_SIZE,
|
||
chunk_overlap=OVERLAP_SIZE,
|
||
zh_title_enhance=ZH_TITLE_ENHANCE,
|
||
docs: Dict = {},
|
||
not_refresh_vs_cache: bool = False,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/upload_docs接口
|
||
'''
|
||
|
||
def convert_file(file, filename=None):
|
||
if isinstance(file, bytes): # raw bytes
|
||
file = BytesIO(file)
|
||
elif hasattr(file, "read"): # a file io like object
|
||
filename = filename or file.name
|
||
else: # a local path
|
||
file = Path(file).absolute().open("rb")
|
||
filename = filename or os.path.split(file.name)[-1]
|
||
return filename, file
|
||
|
||
files = [convert_file(file) for file in files]
|
||
data = {
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"override": override,
|
||
"to_vector_store": to_vector_store,
|
||
"chunk_size": chunk_size,
|
||
"chunk_overlap": chunk_overlap,
|
||
"zh_title_enhance": zh_title_enhance,
|
||
"docs": docs,
|
||
"not_refresh_vs_cache": not_refresh_vs_cache,
|
||
}
|
||
|
||
if isinstance(data["docs"], dict):
|
||
data["docs"] = json.dumps(data["docs"], ensure_ascii=False)
|
||
response = self.post(
|
||
"/knowledge_base/upload_docs",
|
||
data=data,
|
||
files=[("files", (filename, file)) for filename, file in files],
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def delete_kb_docs(
|
||
self,
|
||
knowledge_base_name: str,
|
||
file_names: List[str],
|
||
delete_content: bool = False,
|
||
not_refresh_vs_cache: bool = False,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/delete_docs接口
|
||
'''
|
||
data = {
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"file_names": file_names,
|
||
"delete_content": delete_content,
|
||
"not_refresh_vs_cache": not_refresh_vs_cache,
|
||
}
|
||
|
||
response = self.post(
|
||
"/knowledge_base/delete_docs",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def update_kb_info(self, knowledge_base_name, kb_info):
|
||
'''
|
||
对应api.py/knowledge_base/update_info接口
|
||
'''
|
||
data = {
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"kb_info": kb_info,
|
||
}
|
||
|
||
response = self.post(
|
||
"/knowledge_base/update_info",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def update_kb_docs(
|
||
self,
|
||
knowledge_base_name: str,
|
||
file_names: List[str],
|
||
override_custom_docs: bool = False,
|
||
chunk_size=CHUNK_SIZE,
|
||
chunk_overlap=OVERLAP_SIZE,
|
||
zh_title_enhance=ZH_TITLE_ENHANCE,
|
||
docs: Dict = {},
|
||
not_refresh_vs_cache: bool = False,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/update_docs接口
|
||
'''
|
||
data = {
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"file_names": file_names,
|
||
"override_custom_docs": override_custom_docs,
|
||
"chunk_size": chunk_size,
|
||
"chunk_overlap": chunk_overlap,
|
||
"zh_title_enhance": zh_title_enhance,
|
||
"docs": docs,
|
||
"not_refresh_vs_cache": not_refresh_vs_cache,
|
||
}
|
||
|
||
if isinstance(data["docs"], dict):
|
||
data["docs"] = json.dumps(data["docs"], ensure_ascii=False)
|
||
|
||
response = self.post(
|
||
"/knowledge_base/update_docs",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def recreate_vector_store(
|
||
self,
|
||
knowledge_base_name: str,
|
||
allow_empty_kb: bool = True,
|
||
vs_type: str = DEFAULT_VS_TYPE,
|
||
embed_model: str = EMBEDDING_MODEL,
|
||
chunk_size=CHUNK_SIZE,
|
||
chunk_overlap=OVERLAP_SIZE,
|
||
zh_title_enhance=ZH_TITLE_ENHANCE,
|
||
):
|
||
'''
|
||
对应api.py/knowledge_base/recreate_vector_store接口
|
||
'''
|
||
data = {
|
||
"knowledge_base_name": knowledge_base_name,
|
||
"allow_empty_kb": allow_empty_kb,
|
||
"vs_type": vs_type,
|
||
"embed_model": embed_model,
|
||
"chunk_size": chunk_size,
|
||
"chunk_overlap": chunk_overlap,
|
||
"zh_title_enhance": zh_title_enhance,
|
||
}
|
||
|
||
response = self.post(
|
||
"/knowledge_base/recreate_vector_store",
|
||
json=data,
|
||
stream=True,
|
||
timeout=None,
|
||
)
|
||
return self._httpx_stream2generator(response, as_json=True)
|
||
|
||
# LLM模型相关操作
|
||
def list_running_models(
|
||
self,
|
||
controller_address: str = None,
|
||
):
|
||
'''
|
||
获取Fastchat中正运行的模型列表
|
||
'''
|
||
data = {
|
||
"controller_address": controller_address,
|
||
}
|
||
|
||
if log_verbose:
|
||
logger.info(f'{self.__class__.__name__}:data: {data}')
|
||
|
||
response = self.post(
|
||
"/llm_model/list_running_models",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(response, as_json=True, value_func=lambda r: r.get("data", []))
|
||
|
||
def get_default_llm_model(self, local_first: bool = True) -> Tuple[str, bool]:
|
||
'''
|
||
从服务器上获取当前运行的LLM模型。
|
||
当 local_first=True 时,优先返回运行中的本地模型,否则优先按LLM_MODELS配置顺序返回。
|
||
返回类型为(model_name, is_local_model)
|
||
'''
|
||
|
||
def ret_sync():
|
||
running_models = self.list_running_models()
|
||
if not running_models:
|
||
return "", False
|
||
|
||
model = ""
|
||
for m in LLM_MODELS:
|
||
if m not in running_models:
|
||
continue
|
||
is_local = not running_models[m].get("online_api")
|
||
if local_first and not is_local:
|
||
continue
|
||
else:
|
||
model = m
|
||
break
|
||
|
||
if not model: # LLM_MODELS中配置的模型都不在running_models里
|
||
model = list(running_models)[0]
|
||
is_local = not running_models[model].get("online_api")
|
||
return model, is_local
|
||
|
||
async def ret_async():
|
||
running_models = await self.list_running_models()
|
||
if not running_models:
|
||
return "", False
|
||
|
||
model = ""
|
||
for m in LLM_MODELS:
|
||
if m not in running_models:
|
||
continue
|
||
is_local = not running_models[m].get("online_api")
|
||
if local_first and not is_local:
|
||
continue
|
||
else:
|
||
model = m
|
||
break
|
||
|
||
if not model: # LLM_MODELS中配置的模型都不在running_models里
|
||
model = list(running_models)[0]
|
||
is_local = not running_models[model].get("online_api")
|
||
return model, is_local
|
||
|
||
if self._use_async:
|
||
return ret_async()
|
||
else:
|
||
return ret_sync()
|
||
|
||
def list_config_models(
|
||
self,
|
||
types: List[str] = ["local", "online"],
|
||
) -> Dict[str, Dict]:
|
||
'''
|
||
获取服务器configs中配置的模型列表,返回形式为{"type": {model_name: config}, ...}。
|
||
'''
|
||
data = {
|
||
"types": types,
|
||
}
|
||
response = self.post(
|
||
"/llm_model/list_config_models",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(response, as_json=True, value_func=lambda r: r.get("data", {}))
|
||
|
||
def get_model_config(
|
||
self,
|
||
model_name: str = None,
|
||
) -> Dict:
|
||
'''
|
||
获取服务器上模型配置
|
||
'''
|
||
data = {
|
||
"model_name": model_name,
|
||
}
|
||
response = self.post(
|
||
"/llm_model/get_model_config",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(response, as_json=True, value_func=lambda r: r.get("data", {}))
|
||
|
||
def list_search_engines(self) -> List[str]:
|
||
'''
|
||
获取服务器支持的搜索引擎
|
||
'''
|
||
response = self.post(
|
||
"/server/list_search_engines",
|
||
)
|
||
return self._get_response_value(response, as_json=True, value_func=lambda r: r.get("data", {}))
|
||
|
||
def stop_llm_model(
|
||
self,
|
||
model_name: str,
|
||
controller_address: str = None,
|
||
):
|
||
'''
|
||
停止某个LLM模型。
|
||
注意:由于Fastchat的实现方式,实际上是把LLM模型所在的model_worker停掉。
|
||
'''
|
||
data = {
|
||
"model_name": model_name,
|
||
"controller_address": controller_address,
|
||
}
|
||
|
||
response = self.post(
|
||
"/llm_model/stop",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
def change_llm_model(
|
||
self,
|
||
model_name: str,
|
||
new_model_name: str,
|
||
controller_address: str = None,
|
||
):
|
||
'''
|
||
向fastchat controller请求切换LLM模型。
|
||
'''
|
||
if not model_name or not new_model_name:
|
||
return {
|
||
"code": 500,
|
||
"msg": f"未指定模型名称"
|
||
}
|
||
|
||
def ret_sync():
|
||
running_models = self.list_running_models()
|
||
if new_model_name == model_name or new_model_name in running_models:
|
||
return {
|
||
"code": 200,
|
||
"msg": "无需切换"
|
||
}
|
||
|
||
if model_name not in running_models:
|
||
return {
|
||
"code": 500,
|
||
"msg": f"指定的模型'{model_name}'没有运行。当前运行模型:{running_models}"
|
||
}
|
||
|
||
config_models = self.list_config_models()
|
||
if new_model_name not in config_models.get("local", {}):
|
||
return {
|
||
"code": 500,
|
||
"msg": f"要切换的模型'{new_model_name}'在configs中没有配置。"
|
||
}
|
||
|
||
data = {
|
||
"model_name": model_name,
|
||
"new_model_name": new_model_name,
|
||
"controller_address": controller_address,
|
||
}
|
||
|
||
response = self.post(
|
||
"/llm_model/change",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
async def ret_async():
|
||
running_models = await self.list_running_models()
|
||
if new_model_name == model_name or new_model_name in running_models:
|
||
return {
|
||
"code": 200,
|
||
"msg": "无需切换"
|
||
}
|
||
|
||
if model_name not in running_models:
|
||
return {
|
||
"code": 500,
|
||
"msg": f"指定的模型'{model_name}'没有运行。当前运行模型:{running_models}"
|
||
}
|
||
|
||
config_models = await self.list_config_models()
|
||
if new_model_name not in config_models.get("local", {}):
|
||
return {
|
||
"code": 500,
|
||
"msg": f"要切换的模型'{new_model_name}'在configs中没有配置。"
|
||
}
|
||
|
||
data = {
|
||
"model_name": model_name,
|
||
"new_model_name": new_model_name,
|
||
"controller_address": controller_address,
|
||
}
|
||
|
||
response = self.post(
|
||
"/llm_model/change",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(response, as_json=True)
|
||
|
||
if self._use_async:
|
||
return ret_async()
|
||
else:
|
||
return ret_sync()
|
||
|
||
def embed_texts(
|
||
self,
|
||
texts: List[str],
|
||
embed_model: str = EMBEDDING_MODEL,
|
||
to_query: bool = False,
|
||
) -> List[List[float]]:
|
||
'''
|
||
对文本进行向量化,可选模型包括本地 embed_models 和支持 embeddings 的在线模型
|
||
'''
|
||
data = {
|
||
"texts": texts,
|
||
"embed_model": embed_model,
|
||
"to_query": to_query,
|
||
}
|
||
resp = self.post(
|
||
"/other/embed_texts",
|
||
json=data,
|
||
)
|
||
return self._get_response_value(resp, as_json=True, value_func=lambda r: r.get("data"))
|
||
|
||
def chat_feedback(
|
||
self,
|
||
message_id: str,
|
||
score: int,
|
||
reason: str = "",
|
||
) -> int:
|
||
'''
|
||
反馈对话评价
|
||
'''
|
||
data = {
|
||
"message_id": message_id,
|
||
"score": score,
|
||
"reason": reason,
|
||
}
|
||
resp = self.post("/chat/feedback", json=data)
|
||
return self._get_response_value(resp)
|
||
|
||
|
||
class AsyncApiRequest(ApiRequest):
|
||
def __init__(self, base_url: str = api_address(), timeout: float = HTTPX_DEFAULT_TIMEOUT):
|
||
super().__init__(base_url, timeout)
|
||
self._use_async = True
|
||
|
||
|
||
def check_error_msg(data: Union[str, dict, list], key: str = "errorMsg") -> str:
|
||
'''
|
||
return error message if error occured when requests API
|
||
'''
|
||
if isinstance(data, dict):
|
||
if key in data:
|
||
return data[key]
|
||
if "code" in data and data["code"] != 200:
|
||
return data["msg"]
|
||
return ""
|
||
|
||
|
||
def check_success_msg(data: Union[str, dict, list], key: str = "msg") -> str:
|
||
'''
|
||
return error message if error occured when requests API
|
||
'''
|
||
if (isinstance(data, dict)
|
||
and key in data
|
||
and "code" in data
|
||
and data["code"] == 200):
|
||
return data[key]
|
||
return ""
|
||
|
||
|
||
if __name__ == "__main__":
|
||
api = ApiRequest()
|
||
aapi = AsyncApiRequest()
|
||
|
||
# with api.chat_chat("你好") as r:
|
||
# for t in r.iter_text(None):
|
||
# print(t)
|
||
|
||
# r = api.chat_chat("你好", no_remote_api=True)
|
||
# for t in r:
|
||
# print(t)
|
||
|
||
# r = api.duckduckgo_search_chat("室温超导最新研究进展", no_remote_api=True)
|
||
# for t in r:
|
||
# print(t)
|
||
|
||
# print(api.list_knowledge_bases())
|