Langchain-Chatchat/server/knowledge_base/kb_doc_api.py

131 lines
5.0 KiB
Python

import os
import urllib
import shutil
from fastapi import File, Form, UploadFile
from server.utils import BaseResponse, ListResponse
from server.knowledge_base.utils import (validate_kb_name, get_kb_path, get_doc_path,
get_file_path, file2text, docs2vs,
refresh_vs_cache, get_vs_path, )
from fastapi.responses import StreamingResponse
import json
import shutil
async def list_docs(knowledge_base_name: str):
if not validate_kb_name(knowledge_base_name):
return ListResponse(code=403, msg="Don't attack me", data=[])
knowledge_base_name = urllib.parse.unquote(knowledge_base_name)
kb_path = get_kb_path(knowledge_base_name)
local_doc_folder = get_doc_path(knowledge_base_name)
if not os.path.exists(kb_path):
return ListResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}", data=[])
if not os.path.exists(local_doc_folder):
all_doc_names = []
else:
all_doc_names = [
doc
for doc in os.listdir(local_doc_folder)
if os.path.isfile(os.path.join(local_doc_folder, doc))
]
return ListResponse(data=all_doc_names)
async def upload_doc(file: UploadFile = File(description="上传文件"),
knowledge_base_name: str = Form(..., description="知识库名称", example="kb1"),
override: bool = Form(False, description="覆盖已有文件", example=False),
):
if not validate_kb_name(knowledge_base_name):
return BaseResponse(code=403, msg="Don't attack me")
saved_path = get_doc_path(knowledge_base_name)
if not os.path.exists(saved_path):
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
file_content = await file.read() # 读取上传文件的内容
file_path = os.path.join(saved_path, file.filename)
if (os.path.exists(file_path)
and not override
and os.path.getsize(file_path) == len(file_content)
):
file_status = f"文件 {file.filename} 已存在。"
return BaseResponse(code=404, msg=file_status)
try:
with open(file_path, "wb") as f:
f.write(file_content)
except Exception as e:
return BaseResponse(code=500, msg=f"{file.filename} 文件上传失败,报错信息为: {e}")
filepath = get_file_path(knowledge_base_name, file.filename)
docs = file2text(filepath)
docs2vs(docs, knowledge_base_name)
return BaseResponse(code=200, msg=f"成功上传文件 {file.filename}")
async def delete_doc(knowledge_base_name: str,
doc_name: str,
):
if not validate_kb_name(knowledge_base_name):
return BaseResponse(code=403, msg="Don't attack me")
knowledge_base_name = urllib.parse.unquote(knowledge_base_name)
if not os.path.exists(get_kb_path(knowledge_base_name)):
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
doc_path = get_file_path(knowledge_base_name, doc_name)
if os.path.exists(doc_path):
os.remove(doc_path)
remain_docs = await list_docs(knowledge_base_name)
if len(remain_docs.data) == 0:
shutil.rmtree(get_kb_path(knowledge_base_name), ignore_errors=True)
return BaseResponse(code=200, msg=f"{doc_name} 文件删除成功")
else:
# TODO: 重写从向量库中删除文件
status = "" # local_doc_qa.delete_file_from_vector_store(doc_path, get_vs_path(knowledge_base_name))
if "success" in status:
refresh_vs_cache(knowledge_base_name)
return BaseResponse(code=200, msg=f"{doc_name} 文件删除成功")
else:
return BaseResponse(code=500, msg=f"{doc_name} 文件删除失败")
else:
return BaseResponse(code=404, msg=f"未找到文件 {doc_name}")
async def update_doc():
# TODO: 替换文件
# refresh_vs_cache(knowledge_base_name)
pass
async def download_doc():
# TODO: 下载文件
pass
async def recreate_vector_store(knowledge_base_name: str):
'''
recreate vector store from the content.
this is usefull when user can copy files to content folder directly instead of upload through network.
'''
async def output(kb):
vs_path = get_vs_path(kb)
if os.path.isdir(vs_path):
shutil.rmtree(vs_path)
os.mkdir(vs_path)
print(f"start to recreate vectore in {vs_path}")
docs = (await list_docs(kb)).data
for i, filename in enumerate(docs):
filepath = get_file_path(kb, filename)
print(f"processing {filepath} to vector store.")
docs = file2text(filepath)
docs2vs(docs, kb)
yield json.dumps({
"total": len(docs),
"finished": i + 1,
"doc": filename,
})
return StreamingResponse(output(knowledge_base_name), media_type="text/event-stream")