241 lines
10 KiB
Python
241 lines
10 KiB
Python
import zhipuai
|
||
from server.model_workers.base import ApiModelWorker
|
||
from fastchat import conversation as conv
|
||
import sys
|
||
import json
|
||
from typing import List, Literal,Dict
|
||
|
||
|
||
class ChatGLMWorker(ApiModelWorker):
|
||
BASE_URL = "https://open.bigmodel.cn/api/paas/v3/model-api"
|
||
SUPPORT_MODELS = ["chatglm_pro", "chatglm_std", "chatglm_lite"]
|
||
|
||
def __init__(
|
||
self,
|
||
*,
|
||
model_names: List[str] = ["chatglm-api"],
|
||
version: Literal["chatglm_pro", "chatglm_std", "chatglm_lite"] = "chatglm_std",
|
||
controller_addr: str,
|
||
worker_addr: str,
|
||
**kwargs,
|
||
):
|
||
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
|
||
kwargs.setdefault("context_len", 32768)
|
||
super().__init__(**kwargs)
|
||
self.version = version
|
||
self.zhipuai = zhipuai
|
||
from server.utils import get_model_worker_config
|
||
self.zhipuai.api_key = get_model_worker_config("chatglm-api").get("api_key")
|
||
# 这里的是chatglm api的模板,其它API的conv_template需要定制
|
||
self.conv = conv.Conversation(
|
||
name="chatglm-api",
|
||
system_message="你是一个聪明、对人类有帮助的人工智能,你可以对人类提出的问题给出有用、详细、礼貌的回答。",
|
||
messages=[],
|
||
roles=["Human", "Assistant"],
|
||
sep="\n### ",
|
||
stop_str="###",
|
||
)
|
||
|
||
def generate_stream_gate(self, params):
|
||
# TODO: 支持stream参数,维护request_id,传过来的prompt也有问题
|
||
super().generate_stream_gate(params)
|
||
|
||
model=self.version
|
||
# if isinstance(params["prompt"], str):
|
||
# prompt=self.prompt_collator(content_user=params["prompt"],
|
||
# role_user="user") #[{"role": "user", "content": params["prompt"]}]
|
||
# else:
|
||
# prompt = params["prompt"]
|
||
prompt = params["prompt"]
|
||
print(prompt)
|
||
temperature=params.get("temperature")
|
||
top_p=params.get("top_p")
|
||
stream = params.get("stream")
|
||
|
||
if stream:
|
||
return self.create_stream(model=model,
|
||
message=prompt,
|
||
top_p=top_p,
|
||
temperature=temperature)
|
||
else:
|
||
return self.create_oneshot(model=model,
|
||
message=prompt,
|
||
top_p=top_p,
|
||
temperature=temperature)
|
||
|
||
# response = zhipuai.model_api.sse_invoke(
|
||
# model=self.version,
|
||
# prompt=[{"role": "user", "content": params["prompt"]}],
|
||
# temperature=params.get("temperature"),
|
||
# top_p=params.get("top_p"),
|
||
# incremental=False,
|
||
# )
|
||
# for e in response.events():
|
||
# if e.event == "add":
|
||
# yield json.dumps({"error_code": 0, "text": e.data}, ensure_ascii=False).encode() + b"\0"
|
||
# # TODO: 更健壮的消息处理
|
||
# # elif e.event == "finish":
|
||
# # ...
|
||
|
||
def get_embeddings(self, params):
|
||
# TODO: 支持embeddings
|
||
print("embedding")
|
||
print(params)
|
||
|
||
def create_oneshot(self,
|
||
message: List[Dict[str,str]]=[{"role":"user","content":"你好,你可以做什么"}],
|
||
model:str = "chatglm_pro",
|
||
top_p:float=0.7,
|
||
temperature:float=0.9,
|
||
**kwargs
|
||
):
|
||
response = self.zhipuai.model_api.invoke(
|
||
model = model,
|
||
prompt = message,
|
||
top_p = top_p,
|
||
temperature = temperature
|
||
)
|
||
if response["code"] == 200:
|
||
result = response["data"]["choices"][-1]["content"]
|
||
return json.dumps({"error_code": 0, "text": result}, ensure_ascii=False).encode() + b"\0"
|
||
else:
|
||
#TODO 确认openai的error code
|
||
print(f"error occurred, error code:{response['code']},error msg:{response['msg']}")
|
||
return json.dumps({"error_code": response['code'],
|
||
"text": f"error occurred, error code:{response['code']},error msg:{response['msg']}"
|
||
},
|
||
ensure_ascii=False).encode() + b"\0"
|
||
|
||
def create_stream(self,
|
||
message: List[Dict[str,str]]=[{"role":"user","content":"你好,你可以做什么"}],
|
||
model:str = "chatglm_pro",
|
||
top_p:float=0.7,
|
||
temperature:float=0.9,
|
||
**kwargs
|
||
):
|
||
response = self.zhipuai.model_api.sse_invoke(
|
||
model = model,
|
||
prompt = message,
|
||
top_p = top_p,
|
||
temperature = temperature,
|
||
incremental = True
|
||
)
|
||
for event in response.events():
|
||
if event.event == "add":
|
||
# yield event.data
|
||
yield json.dumps({"error_code": 0, "text": event.data}, ensure_ascii=False).encode() + b"\0"
|
||
elif event.event == "error" or event.event == "interrupted":
|
||
# return event.data
|
||
yield json.dumps({"error_code": 0, "text": event.data}, ensure_ascii=False).encode() + b"\0"
|
||
elif event.event == "finish":
|
||
# yield event.data
|
||
yield json.dumps({"error_code": 0, "text": event.data}, ensure_ascii=False).encode() + b"\0"
|
||
print(event.meta)
|
||
else:
|
||
print("Something get wrong with ZhipuAPILoader.create_chat_completion_stream")
|
||
print(event.data)
|
||
yield json.dumps({"error_code": 1, "text": event.data}, ensure_ascii=False).encode() + b"\0"
|
||
|
||
def create_chat_completion(self,
|
||
model: str = "chatglm_pro",
|
||
prompt:List[Dict[str,str]]=[{"role":"user","content":"你好,你可以做什么"}],
|
||
top_p:float=0.7,
|
||
temperature:float=0.9,
|
||
stream:bool=False):
|
||
|
||
if stream:
|
||
return self.create_stream(model=model,
|
||
message=prompt,
|
||
top_p=top_p,
|
||
temperature=temperature)
|
||
else:
|
||
return self.create_oneshot(model=model,
|
||
message=prompt,
|
||
top_p=top_p,
|
||
temperature=temperature)
|
||
|
||
async def acreate_chat_completion(self,
|
||
prompt: List[Dict[str,str]]=[{"role":"system","content":"你是一个人工智能助手"},
|
||
{"role":"user","content":"你好。"}],
|
||
model:str = "chatglm_pro",
|
||
top_p:float=0.7,
|
||
temperature:float=0.9,
|
||
**kwargs):
|
||
response = await self.zhipuai.model_api.async_invoke(
|
||
model = model,
|
||
prompt = prompt,
|
||
top_p = top_p,
|
||
temperature = temperature
|
||
)
|
||
|
||
if response["code"] == 200:
|
||
task_id = response['data']['task_id']
|
||
status = "PROCESSING"
|
||
while status != "SUCCESS":
|
||
# await asyncio.sleep(3) #
|
||
resp = self.zhipuai.model_api.query_async_invoke_result(task_id)
|
||
status = resp['data']['task_status']
|
||
return resp['data']['choices'][-1]['content']
|
||
else:
|
||
print(f"error occurred, error code:{response['code']},error msg:{response['msg']}")
|
||
return
|
||
|
||
def create_completion(self,
|
||
prompt:str="你好",
|
||
model:str="chatglm_pro",
|
||
top_p:float=0.7,
|
||
temperature:float=0.9,
|
||
stream:bool=False,
|
||
**kwargs):
|
||
message = self.prompt_collator(content_user=prompt)
|
||
if stream:
|
||
return self.create_stream(model=model,
|
||
message=message,
|
||
top_p=top_p,
|
||
temperature=temperature)
|
||
else:
|
||
return self.create_oneshot(model=model,
|
||
message=message,
|
||
top_p=top_p,
|
||
temperature=temperature)
|
||
#? make it a sync function?
|
||
async def acreate_completion(self,
|
||
prompt:str="你好",
|
||
model:str = "chatglm_pro",
|
||
top_p:float=0.7,
|
||
temperature:float=0.9,
|
||
**kwargs):
|
||
message = self.prompt_collator(content_user=prompt)
|
||
response = self.zhipuai.model_api.async_invoke(
|
||
model = model,
|
||
prompt = message,
|
||
top_p = top_p,
|
||
temperature = temperature
|
||
)
|
||
|
||
if response["code"] == 200:
|
||
task_id = response['data']['task_id']
|
||
status = "PROCESSING"
|
||
while status != "SUCCESS":
|
||
# await asyncio.sleep(3) #
|
||
resp = self.zhipuai.model_api.query_async_invoke_result(task_id)
|
||
status = resp['data']['task_status']
|
||
return resp['data']['choices'][-1]['content']
|
||
else:
|
||
print(f"error occurred, error code:{response['code']},error msg:{response['msg']}")
|
||
return
|
||
|
||
|
||
if __name__ == "__main__":
|
||
import uvicorn
|
||
from server.utils import MakeFastAPIOffline
|
||
from fastchat.serve.model_worker import app
|
||
|
||
worker = ChatGLMWorker(
|
||
controller_addr="http://127.0.0.1:20001",
|
||
worker_addr="http://127.0.0.1:20003",
|
||
)
|
||
sys.modules["fastchat.serve.model_worker"].worker = worker
|
||
MakeFastAPIOffline(app)
|
||
uvicorn.run(app, port=20003)
|