316 lines
12 KiB
Python
316 lines
12 KiB
Python
import os
|
||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
||
from langchain.embeddings.openai import OpenAIEmbeddings
|
||
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
||
from configs.model_config import (
|
||
embedding_model_dict,
|
||
KB_ROOT_PATH,
|
||
CHUNK_SIZE,
|
||
OVERLAP_SIZE,
|
||
ZH_TITLE_ENHANCE
|
||
)
|
||
from functools import lru_cache
|
||
import importlib
|
||
from text_splitter import zh_title_enhance
|
||
import langchain.document_loaders
|
||
from langchain.docstore.document import Document
|
||
from pathlib import Path
|
||
import json
|
||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||
from typing import List, Union, Callable, Dict, Optional, Tuple, Generator
|
||
|
||
|
||
# make HuggingFaceEmbeddings hashable
|
||
def _embeddings_hash(self):
|
||
if isinstance(self, HuggingFaceEmbeddings):
|
||
return hash(self.model_name)
|
||
elif isinstance(self, HuggingFaceBgeEmbeddings):
|
||
return hash(self.model_name)
|
||
elif isinstance(self, OpenAIEmbeddings):
|
||
return hash(self.model)
|
||
|
||
HuggingFaceEmbeddings.__hash__ = _embeddings_hash
|
||
OpenAIEmbeddings.__hash__ = _embeddings_hash
|
||
HuggingFaceBgeEmbeddings.__hash__ = _embeddings_hash
|
||
|
||
|
||
def validate_kb_name(knowledge_base_id: str) -> bool:
|
||
# 检查是否包含预期外的字符或路径攻击关键字
|
||
if "../" in knowledge_base_id:
|
||
return False
|
||
return True
|
||
|
||
|
||
def get_kb_path(knowledge_base_name: str):
|
||
return os.path.join(KB_ROOT_PATH, knowledge_base_name)
|
||
|
||
|
||
def get_doc_path(knowledge_base_name: str):
|
||
return os.path.join(get_kb_path(knowledge_base_name), "content")
|
||
|
||
|
||
def get_vs_path(knowledge_base_name: str):
|
||
return os.path.join(get_kb_path(knowledge_base_name), "vector_store")
|
||
|
||
|
||
def get_file_path(knowledge_base_name: str, doc_name: str):
|
||
return os.path.join(get_doc_path(knowledge_base_name), doc_name)
|
||
|
||
|
||
def list_kbs_from_folder():
|
||
return [f for f in os.listdir(KB_ROOT_PATH)
|
||
if os.path.isdir(os.path.join(KB_ROOT_PATH, f))]
|
||
|
||
|
||
def list_files_from_folder(kb_name: str):
|
||
doc_path = get_doc_path(kb_name)
|
||
return [file for file in os.listdir(doc_path)
|
||
if os.path.isfile(os.path.join(doc_path, file))]
|
||
|
||
|
||
@lru_cache(1)
|
||
def load_embeddings(model: str, device: str):
|
||
if model == "text-embedding-ada-002": # openai text-embedding-ada-002
|
||
embeddings = OpenAIEmbeddings(openai_api_key=embedding_model_dict[model], chunk_size=CHUNK_SIZE)
|
||
elif 'bge-' in model:
|
||
embeddings = HuggingFaceBgeEmbeddings(model_name=embedding_model_dict[model],
|
||
model_kwargs={'device': device},
|
||
query_instruction="为这个句子生成表示以用于检索相关文章:")
|
||
if model == "bge-large-zh-noinstruct": # bge large -noinstruct embedding
|
||
embeddings.query_instruction = ""
|
||
else:
|
||
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_dict[model], model_kwargs={'device': device})
|
||
return embeddings
|
||
|
||
|
||
LOADER_DICT = {"UnstructuredHTMLLoader": ['.html'],
|
||
"UnstructuredMarkdownLoader": ['.md'],
|
||
"CustomJSONLoader": [".json"],
|
||
"CSVLoader": [".csv"],
|
||
"RapidOCRPDFLoader": [".pdf"],
|
||
"RapidOCRLoader": ['.png', '.jpg', '.jpeg', '.bmp'],
|
||
"UnstructuredFileLoader": ['.eml', '.msg', '.rst',
|
||
'.rtf', '.txt', '.xml',
|
||
'.doc', '.docx', '.epub', '.odt',
|
||
'.ppt', '.pptx', '.tsv'], # '.xlsx'
|
||
}
|
||
SUPPORTED_EXTS = [ext for sublist in LOADER_DICT.values() for ext in sublist]
|
||
|
||
|
||
class CustomJSONLoader(langchain.document_loaders.JSONLoader):
|
||
'''
|
||
langchain的JSONLoader需要jq,在win上使用不便,进行替代。
|
||
'''
|
||
|
||
def __init__(
|
||
self,
|
||
file_path: Union[str, Path],
|
||
content_key: Optional[str] = None,
|
||
metadata_func: Optional[Callable[[Dict, Dict], Dict]] = None,
|
||
text_content: bool = True,
|
||
json_lines: bool = False,
|
||
):
|
||
"""Initialize the JSONLoader.
|
||
|
||
Args:
|
||
file_path (Union[str, Path]): The path to the JSON or JSON Lines file.
|
||
content_key (str): The key to use to extract the content from the JSON if
|
||
results to a list of objects (dict).
|
||
metadata_func (Callable[Dict, Dict]): A function that takes in the JSON
|
||
object extracted by the jq_schema and the default metadata and returns
|
||
a dict of the updated metadata.
|
||
text_content (bool): Boolean flag to indicate whether the content is in
|
||
string format, default to True.
|
||
json_lines (bool): Boolean flag to indicate whether the input is in
|
||
JSON Lines format.
|
||
"""
|
||
self.file_path = Path(file_path).resolve()
|
||
self._content_key = content_key
|
||
self._metadata_func = metadata_func
|
||
self._text_content = text_content
|
||
self._json_lines = json_lines
|
||
|
||
# TODO: langchain's JSONLoader.load has a encoding bug, raise gbk encoding error on windows.
|
||
# This is a workaround for langchain==0.0.266. I have make a pr(#9785) to langchain, it should be deleted after langchain upgraded.
|
||
def load(self) -> List[Document]:
|
||
"""Load and return documents from the JSON file."""
|
||
docs: List[Document] = []
|
||
if self._json_lines:
|
||
with self.file_path.open(encoding="utf-8") as f:
|
||
for line in f:
|
||
line = line.strip()
|
||
if line:
|
||
self._parse(line, docs)
|
||
else:
|
||
self._parse(self.file_path.read_text(encoding="utf-8"), docs)
|
||
return docs
|
||
|
||
def _parse(self, content: str, docs: List[Document]) -> None:
|
||
"""Convert given content to documents."""
|
||
data = json.loads(content)
|
||
|
||
# Perform some validation
|
||
# This is not a perfect validation, but it should catch most cases
|
||
# and prevent the user from getting a cryptic error later on.
|
||
if self._content_key is not None:
|
||
self._validate_content_key(data)
|
||
|
||
for i, sample in enumerate(data, len(docs) + 1):
|
||
metadata = dict(
|
||
source=str(self.file_path),
|
||
seq_num=i,
|
||
)
|
||
text = self._get_text(sample=sample, metadata=metadata)
|
||
docs.append(Document(page_content=text, metadata=metadata))
|
||
|
||
|
||
langchain.document_loaders.CustomJSONLoader = CustomJSONLoader
|
||
|
||
|
||
def get_LoaderClass(file_extension):
|
||
for LoaderClass, extensions in LOADER_DICT.items():
|
||
if file_extension in extensions:
|
||
return LoaderClass
|
||
|
||
|
||
class KnowledgeFile:
|
||
def __init__(
|
||
self,
|
||
filename: str,
|
||
knowledge_base_name: str
|
||
):
|
||
self.kb_name = knowledge_base_name
|
||
self.filename = filename
|
||
self.ext = os.path.splitext(filename)[-1].lower()
|
||
if self.ext not in SUPPORTED_EXTS:
|
||
raise ValueError(f"暂未支持的文件格式 {self.ext}")
|
||
self.filepath = get_file_path(knowledge_base_name, filename)
|
||
self.docs = None
|
||
self.document_loader_name = get_LoaderClass(self.ext)
|
||
|
||
# TODO: 增加依据文件格式匹配text_splitter
|
||
self.text_splitter_name = None
|
||
|
||
def file2text(self, using_zh_title_enhance=ZH_TITLE_ENHANCE, refresh: bool = False):
|
||
if self.docs is not None and not refresh:
|
||
return self.docs
|
||
|
||
print(f"{self.document_loader_name} used for {self.filepath}")
|
||
try:
|
||
if self.document_loader_name in []:
|
||
document_loaders_module = importlib.import_module('document_loaders')
|
||
else:
|
||
document_loaders_module = importlib.import_module('langchain.document_loaders')
|
||
DocumentLoader = getattr(document_loaders_module, self.document_loader_name)
|
||
except Exception as e:
|
||
print(e)
|
||
document_loaders_module = importlib.import_module('langchain.document_loaders')
|
||
DocumentLoader = getattr(document_loaders_module, "UnstructuredFileLoader")
|
||
if self.document_loader_name == "UnstructuredFileLoader":
|
||
loader = DocumentLoader(self.filepath, autodetect_encoding=True)
|
||
elif self.document_loader_name == "CSVLoader":
|
||
loader = DocumentLoader(self.filepath, encoding="utf-8")
|
||
elif self.document_loader_name == "JSONLoader":
|
||
loader = DocumentLoader(self.filepath, jq_schema=".", text_content=False)
|
||
elif self.document_loader_name == "CustomJSONLoader":
|
||
loader = DocumentLoader(self.filepath, text_content=False)
|
||
elif self.document_loader_name == "UnstructuredMarkdownLoader":
|
||
loader = DocumentLoader(self.filepath, mode="elements")
|
||
elif self.document_loader_name == "UnstructuredHTMLLoader":
|
||
loader = DocumentLoader(self.filepath, mode="elements")
|
||
else:
|
||
loader = DocumentLoader(self.filepath)
|
||
|
||
if self.ext in ".csv":
|
||
docs = loader.load()
|
||
else:
|
||
try:
|
||
if self.text_splitter_name is None:
|
||
text_splitter_module = importlib.import_module('langchain.text_splitter')
|
||
TextSplitter = getattr(text_splitter_module, "SpacyTextSplitter")
|
||
text_splitter = TextSplitter(
|
||
pipeline="zh_core_web_sm",
|
||
chunk_size=CHUNK_SIZE,
|
||
chunk_overlap=OVERLAP_SIZE,
|
||
)
|
||
self.text_splitter_name = "SpacyTextSplitter"
|
||
else:
|
||
text_splitter_module = importlib.import_module('langchain.text_splitter')
|
||
TextSplitter = getattr(text_splitter_module, self.text_splitter_name)
|
||
text_splitter = TextSplitter(
|
||
chunk_size=CHUNK_SIZE,
|
||
chunk_overlap=OVERLAP_SIZE)
|
||
except Exception as e:
|
||
print(e)
|
||
text_splitter_module = importlib.import_module('langchain.text_splitter')
|
||
TextSplitter = getattr(text_splitter_module, "RecursiveCharacterTextSplitter")
|
||
text_splitter = TextSplitter(
|
||
chunk_size=CHUNK_SIZE,
|
||
chunk_overlap=OVERLAP_SIZE,
|
||
)
|
||
|
||
docs = loader.load_and_split(text_splitter)
|
||
print(docs[0])
|
||
if using_zh_title_enhance:
|
||
docs = zh_title_enhance(docs)
|
||
self.docs = docs
|
||
return docs
|
||
|
||
def get_mtime(self):
|
||
return os.path.getmtime(self.filepath)
|
||
|
||
def get_size(self):
|
||
return os.path.getsize(self.filepath)
|
||
|
||
|
||
def run_in_thread_pool(
|
||
func: Callable,
|
||
params: List[Dict] = [],
|
||
pool: ThreadPoolExecutor = None,
|
||
) -> Generator:
|
||
'''
|
||
在线程池中批量运行任务,并将运行结果以生成器的形式返回。
|
||
请确保任务中的所有操作是线程安全的,任务函数请全部使用关键字参数。
|
||
'''
|
||
tasks = []
|
||
if pool is None:
|
||
pool = ThreadPoolExecutor()
|
||
|
||
for kwargs in params:
|
||
thread = pool.submit(func, **kwargs)
|
||
tasks.append(thread)
|
||
|
||
for obj in as_completed(tasks):
|
||
yield obj.result()
|
||
|
||
|
||
def files2docs_in_thread(
|
||
files: List[Union[KnowledgeFile, Tuple[str, str], Dict]],
|
||
pool: ThreadPoolExecutor = None,
|
||
) -> Generator:
|
||
'''
|
||
利用多线程批量将文件转化成langchain Document.
|
||
生成器返回值为{(kb_name, file_name): docs}
|
||
'''
|
||
def task(*, file: KnowledgeFile, **kwargs) -> Dict[Tuple[str, str], List[Document]]:
|
||
try:
|
||
return True, (file.kb_name, file.filename, file.file2text(**kwargs))
|
||
except Exception as e:
|
||
return False, e
|
||
|
||
kwargs_list = []
|
||
for i, file in enumerate(files):
|
||
kwargs = {}
|
||
if isinstance(file, tuple) and len(file) >= 2:
|
||
files[i] = KnowledgeFile(filename=file[0], knowledge_base_name=file[1])
|
||
elif isinstance(file, dict):
|
||
filename = file.pop("filename")
|
||
kb_name = file.pop("kb_name")
|
||
files[i] = KnowledgeFile(filename=filename, knowledge_base_name=kb_name)
|
||
kwargs = file
|
||
kwargs["file"] = file
|
||
kwargs_list.append(kwargs)
|
||
|
||
for result in run_in_thread_pool(func=task, params=kwargs_list, pool=pool):
|
||
yield result
|