232 lines
9.3 KiB
Python
232 lines
9.3 KiB
Python
from configs.model_config import LOG_PATH
|
||
import fastchat.constants
|
||
fastchat.constants.LOGDIR = LOG_PATH
|
||
from fastchat.serve.model_worker import BaseModelWorker
|
||
import uuid
|
||
import json
|
||
import sys
|
||
from pydantic import BaseModel
|
||
import fastchat
|
||
import threading
|
||
from typing import Dict, List
|
||
|
||
|
||
# 恢复被fastchat覆盖的标准输出
|
||
sys.stdout = sys.__stdout__
|
||
sys.stderr = sys.__stderr__
|
||
|
||
|
||
class ApiModelOutMsg(BaseModel):
|
||
error_code: int = 0
|
||
text: str
|
||
|
||
class ApiModelWorker(BaseModelWorker):
|
||
BASE_URL: str
|
||
SUPPORT_MODELS: List
|
||
|
||
def __init__(
|
||
self,
|
||
model_names: List[str],
|
||
controller_addr: str,
|
||
worker_addr: str,
|
||
context_len: int = 2048,
|
||
**kwargs,
|
||
):
|
||
kwargs.setdefault("worker_id", uuid.uuid4().hex[:8])
|
||
kwargs.setdefault("model_path", "")
|
||
kwargs.setdefault("limit_worker_concurrency", 5)
|
||
super().__init__(model_names=model_names,
|
||
controller_addr=controller_addr,
|
||
worker_addr=worker_addr,
|
||
**kwargs)
|
||
self.context_len = context_len
|
||
self.init_heart_beat()
|
||
|
||
def count_token(self, params):
|
||
# TODO:需要完善
|
||
print("count token")
|
||
print(params)
|
||
prompt = params["prompt"]
|
||
return {"count": len(str(prompt)), "error_code": 0}
|
||
|
||
def generate_stream_gate(self, params):
|
||
self.call_ct += 1
|
||
|
||
def generate_gate(self, params):
|
||
for x in self.generate_stream_gate(params):
|
||
pass
|
||
return json.loads(x[:-1].decode())
|
||
|
||
def get_embeddings(self, params):
|
||
print("embedding")
|
||
print(params)
|
||
|
||
# workaround to make program exit with Ctrl+c
|
||
# it should be deleted after pr is merged by fastchat
|
||
def init_heart_beat(self):
|
||
self.register_to_controller()
|
||
self.heart_beat_thread = threading.Thread(
|
||
target=fastchat.serve.model_worker.heart_beat_worker, args=(self,), daemon=True,
|
||
)
|
||
self.heart_beat_thread.start()
|
||
|
||
def prompt_collator(self,
|
||
content_user: str = None,
|
||
role_user:str = "user",
|
||
content_assistant: str = None,
|
||
role_assistant: str = "assistant",
|
||
meta_prompt:List[Dict[str,str]] = [{"role":"system","content":"你是一个AI工具"}],
|
||
use_meta_prompt:bool=False):
|
||
prompt = []
|
||
if use_meta_prompt:
|
||
prompt += meta_prompt
|
||
if content_user:
|
||
prompt_dict = {"role": role_user, "content":content_user}
|
||
prompt.append(prompt_dict)
|
||
if content_assistant:
|
||
prompt_dict = {"role": role_assistant, "content":content_assistant}
|
||
prompt.append(prompt_dict)
|
||
return prompt
|
||
|
||
def create_oneshot(self,
|
||
message: List[Dict[str,str]]=[{"role":"user","content":"你好,你可以做什么"}],
|
||
model:str = "chatglm_pro",
|
||
top_p:float=0.7,
|
||
temperature:float=0.9,
|
||
**kwargs
|
||
):
|
||
response = self.zhipuai.model_api.invoke(
|
||
model = model,
|
||
prompt = message,
|
||
top_p = top_p,
|
||
temperature = temperature
|
||
)
|
||
if response["code"] == 200:
|
||
result = response["data"]["choices"][-1]["content"]
|
||
return json.dumps({"error_code": 0, "text": result}, ensure_ascii=False).encode() + b"\0"
|
||
else:
|
||
#TODO 确认openai的error code
|
||
print(f"error occurred, error code:{response['code']},error msg:{response['msg']}")
|
||
return json.dumps({"error_code": response['code'],
|
||
"text": f"error occurred, error code:{response['code']},error msg:{response['msg']}"
|
||
},
|
||
ensure_ascii=False).encode() + b"\0"
|
||
|
||
def create_stream(self,
|
||
message: List[Dict[str,str]]=[{"role":"user","content":"你好,你可以做什么"}],
|
||
model:str = "chatglm_pro",
|
||
top_p:float=0.7,
|
||
temperature:float=0.9,
|
||
**kwargs
|
||
):
|
||
response = self.zhipuai.model_api.sse_invoke(
|
||
model = model,
|
||
prompt = message,
|
||
top_p = top_p,
|
||
temperature = temperature,
|
||
incremental = True
|
||
)
|
||
for event in response.events():
|
||
if event.event == "add":
|
||
# yield event.data
|
||
yield json.dumps({"error_code": 0, "text": event.data}, ensure_ascii=False).encode() + b"\0"
|
||
elif event.event == "error" or event.event == "interrupted":
|
||
# return event.data
|
||
yield json.dumps({"error_code": 0, "text": event.data}, ensure_ascii=False).encode() + b"\0"
|
||
elif event.event == "finish":
|
||
# yield event.data
|
||
yield json.dumps({"error_code": 0, "text": event.data}, ensure_ascii=False).encode() + b"\0"
|
||
print(event.meta)
|
||
else:
|
||
print("Something get wrong with ZhipuAPILoader.create_chat_completion_stream")
|
||
print(event.data)
|
||
yield json.dumps({"error_code": 1, "text": event.data}, ensure_ascii=False).encode() + b"\0"
|
||
|
||
def create_chat_completion(self,
|
||
model: str = "chatglm_pro",
|
||
prompt:List[Dict[str,str]]=[{"role":"user","content":"你好,你可以做什么"}],
|
||
top_p:float=0.7,
|
||
temperature:float=0.9,
|
||
stream:bool=False):
|
||
|
||
if stream:
|
||
return self.create_stream(model=model,
|
||
message=prompt,
|
||
top_p=top_p,
|
||
temperature=temperature)
|
||
else:
|
||
return self.create_oneshot(model=model,
|
||
message=prompt,
|
||
top_p=top_p,
|
||
temperature=temperature)
|
||
|
||
async def acreate_chat_completion(self,
|
||
prompt: List[Dict[str,str]]=[{"role":"system","content":"你是一个人工智能助手"},
|
||
{"role":"user","content":"你好。"}],
|
||
model:str = "chatglm_pro",
|
||
top_p:float=0.7,
|
||
temperature:float=0.9,
|
||
**kwargs):
|
||
response = await self.zhipuai.model_api.async_invoke(
|
||
model = model,
|
||
prompt = prompt,
|
||
top_p = top_p,
|
||
temperature = temperature
|
||
)
|
||
|
||
if response["code"] == 200:
|
||
task_id = response['data']['task_id']
|
||
status = "PROCESSING"
|
||
while status != "SUCCESS":
|
||
# await asyncio.sleep(3) #
|
||
resp = self.zhipuai.model_api.query_async_invoke_result(task_id)
|
||
status = resp['data']['task_status']
|
||
return resp['data']['choices'][-1]['content']
|
||
else:
|
||
print(f"error occurred, error code:{response['code']},error msg:{response['msg']}")
|
||
return
|
||
|
||
def create_completion(self,
|
||
prompt:str="你好",
|
||
model:str="chatglm_pro",
|
||
top_p:float=0.7,
|
||
temperature:float=0.9,
|
||
stream:bool=False,
|
||
**kwargs):
|
||
message = self.prompt_collator(content_user=prompt)
|
||
if stream:
|
||
return self.create_stream(model=model,
|
||
message=message,
|
||
top_p=top_p,
|
||
temperature=temperature)
|
||
else:
|
||
return self.create_oneshot(model=model,
|
||
message=message,
|
||
top_p=top_p,
|
||
temperature=temperature)
|
||
#? make it a sync function?
|
||
async def acreate_completion(self,
|
||
prompt:str="你好",
|
||
model:str = "chatglm_pro",
|
||
top_p:float=0.7,
|
||
temperature:float=0.9,
|
||
**kwargs):
|
||
message = self.prompt_collator(content_user=prompt)
|
||
response = self.zhipuai.model_api.async_invoke(
|
||
model = model,
|
||
prompt = message,
|
||
top_p = top_p,
|
||
temperature = temperature
|
||
)
|
||
|
||
if response["code"] == 200:
|
||
task_id = response['data']['task_id']
|
||
status = "PROCESSING"
|
||
while status != "SUCCESS":
|
||
# await asyncio.sleep(3) #
|
||
resp = self.zhipuai.model_api.query_async_invoke_result(task_id)
|
||
status = resp['data']['task_status']
|
||
return resp['data']['choices'][-1]['content']
|
||
else:
|
||
print(f"error occurred, error code:{response['code']},error msg:{response['msg']}")
|
||
return |