206 lines
7.9 KiB
Python
206 lines
7.9 KiB
Python
#!/user/bin/env python3
|
||
"""
|
||
File_Name: es_kb_service.py
|
||
Author: TangGuoLiang
|
||
Email: 896165277@qq.com
|
||
Created: 2023-09-05
|
||
"""
|
||
from typing import List
|
||
import os
|
||
import shutil
|
||
from langchain.embeddings.base import Embeddings
|
||
from langchain.schema import Document
|
||
from langchain.vectorstores.elasticsearch import ElasticsearchStore
|
||
from configs import KB_ROOT_PATH, EMBEDDING_MODEL, EMBEDDING_DEVICE, CACHED_VS_NUM
|
||
from server.knowledge_base.kb_service.base import KBService, SupportedVSType
|
||
from server.utils import load_local_embeddings
|
||
from elasticsearch import Elasticsearch
|
||
from configs import logger
|
||
from configs import kbs_config
|
||
|
||
class ESKBService(KBService):
|
||
|
||
def do_init(self):
|
||
self.kb_path = self.get_kb_path(self.kb_name)
|
||
self.index_name = self.kb_path.split("/")[-1]
|
||
self.IP = kbs_config[self.vs_type()]['host']
|
||
self.PORT = kbs_config[self.vs_type()]['port']
|
||
self.user = kbs_config[self.vs_type()].get("user",'')
|
||
self.password = kbs_config[self.vs_type()].get("password",'')
|
||
self.embeddings_model = load_local_embeddings(self.embed_model, EMBEDDING_DEVICE)
|
||
try:
|
||
# ES python客户端连接(仅连接)
|
||
if self.user != "" and self.password != "":
|
||
self.es_client_python = Elasticsearch(f"http://{self.IP}:{self.PORT}",
|
||
basic_auth=(self.user,self.password))
|
||
else:
|
||
logger.warning("ES未配置用户名和密码")
|
||
self.es_client_python = Elasticsearch(f"http://{self.IP}:{self.PORT}")
|
||
self.es_client_python.indices.create(index=self.index_name)
|
||
except ConnectionError:
|
||
logger.error("连接到 Elasticsearch 失败!")
|
||
except Exception as e:
|
||
logger.error(f"Error 发生 : {e}")
|
||
|
||
try:
|
||
# langchain ES 连接、创建索引
|
||
if self.user != "" and self.password != "":
|
||
self.db_init = ElasticsearchStore(
|
||
es_url=f"http://{self.IP}:{self.PORT}",
|
||
index_name=self.index_name,
|
||
query_field="context",
|
||
vector_query_field="dense_vector",
|
||
embedding=self.embeddings_model,
|
||
es_user=self.user,
|
||
es_password=self.password
|
||
)
|
||
else:
|
||
logger.warning("ES未配置用户名和密码")
|
||
self.db_init = ElasticsearchStore(
|
||
es_url=f"http://{self.IP}:{self.PORT}",
|
||
index_name=self.index_name,
|
||
query_field="context",
|
||
vector_query_field="dense_vector",
|
||
embedding=self.embeddings_model,
|
||
)
|
||
except ConnectionError:
|
||
print("### 连接到 Elasticsearch 失败!")
|
||
logger.error("### 连接到 Elasticsearch 失败!")
|
||
except Exception as e:
|
||
logger.error(f"Error 发生 : {e}")
|
||
|
||
@staticmethod
|
||
def get_kb_path(knowledge_base_name: str):
|
||
return os.path.join(KB_ROOT_PATH, knowledge_base_name)
|
||
|
||
@staticmethod
|
||
def get_vs_path(knowledge_base_name: str):
|
||
return os.path.join(ESKBService.get_kb_path(knowledge_base_name), "vector_store")
|
||
|
||
def do_create_kb(self):
|
||
if os.path.exists(self.doc_path):
|
||
if not os.path.exists(os.path.join(self.kb_path, "vector_store")):
|
||
os.makedirs(os.path.join(self.kb_path, "vector_store"))
|
||
else:
|
||
logger.warning("directory `vector_store` already exists.")
|
||
|
||
def vs_type(self) -> str:
|
||
return SupportedVSType.ES
|
||
|
||
def _load_es(self, docs, embed_model):
|
||
# 将docs写入到ES中
|
||
try:
|
||
# 连接 + 同时写入文档
|
||
if self.user != "" and self.password != "":
|
||
self.db = ElasticsearchStore.from_documents(
|
||
documents=docs,
|
||
embedding=embed_model,
|
||
es_url= f"http://{self.IP}:{self.PORT}",
|
||
index_name=self.index_name,
|
||
distance_strategy="COSINE",
|
||
query_field="context",
|
||
vector_query_field="dense_vector",
|
||
verify_certs=False,
|
||
es_user=self.user,
|
||
es_password=self.password
|
||
)
|
||
else:
|
||
self.db = ElasticsearchStore.from_documents(
|
||
documents=docs,
|
||
embedding=embed_model,
|
||
es_url= f"http://{self.IP}:{self.PORT}",
|
||
index_name=self.index_name,
|
||
distance_strategy="COSINE",
|
||
query_field="context",
|
||
vector_query_field="dense_vector",
|
||
verify_certs=False)
|
||
except ConnectionError as ce:
|
||
print(ce)
|
||
print("连接到 Elasticsearch 失败!")
|
||
logger.error("连接到 Elasticsearch 失败!")
|
||
except Exception as e:
|
||
logger.error(f"Error 发生 : {e}")
|
||
print(e)
|
||
|
||
|
||
|
||
def do_search(self, query:str, top_k: int, score_threshold: float):
|
||
# 文本相似性检索
|
||
docs = self.db_init.similarity_search_with_score(query=query,
|
||
k=top_k)
|
||
return docs
|
||
|
||
|
||
def do_delete_doc(self, kb_file, **kwargs):
|
||
if self.es_client_python.indices.exists(index=self.index_name):
|
||
# 从向量数据库中删除索引(文档名称是Keyword)
|
||
query = {
|
||
"query": {
|
||
"term": {
|
||
"metadata.source.keyword": kb_file.filepath
|
||
}
|
||
}
|
||
}
|
||
# 注意设置size,默认返回10个。
|
||
search_results = self.es_client_python.search(body=query, size=50)
|
||
delete_list = [hit["_id"] for hit in search_results['hits']['hits']]
|
||
if len(delete_list) == 0:
|
||
return None
|
||
else:
|
||
for doc_id in delete_list:
|
||
try:
|
||
self.es_client_python.delete(index=self.index_name,
|
||
id=doc_id,
|
||
refresh=True)
|
||
except Exception as e:
|
||
logger.error("ES Docs Delete Error!")
|
||
|
||
# self.db_init.delete(ids=delete_list)
|
||
#self.es_client_python.indices.refresh(index=self.index_name)
|
||
|
||
|
||
def do_add_doc(self, docs: List[Document], **kwargs):
|
||
'''向知识库添加文件'''
|
||
print(f"server.knowledge_base.kb_service.es_kb_service.do_add_doc 输入的docs参数长度为:{len(docs)}")
|
||
print("*"*100)
|
||
self._load_es(docs=docs, embed_model=self.embeddings_model)
|
||
# 获取 id 和 source , 格式:[{"id": str, "metadata": dict}, ...]
|
||
print("写入数据成功.")
|
||
print("*"*100)
|
||
|
||
if self.es_client_python.indices.exists(index=self.index_name):
|
||
file_path = docs[0].metadata.get("source")
|
||
query = {
|
||
"query": {
|
||
"term": {
|
||
"metadata.source.keyword": file_path
|
||
}
|
||
}
|
||
}
|
||
search_results = self.es_client_python.search(body=query)
|
||
if len(search_results["hits"]["hits"]) == 0:
|
||
raise ValueError("召回元素个数为0")
|
||
info_docs = [{"id":hit["_id"], "metadata": hit["_source"]["metadata"]} for hit in search_results["hits"]["hits"]]
|
||
return info_docs
|
||
|
||
|
||
def do_clear_vs(self):
|
||
"""从知识库删除全部向量"""
|
||
if self.es_client_python.indices.exists(index=self.kb_name):
|
||
self.es_client_python.indices.delete(index=self.kb_name)
|
||
|
||
|
||
def do_drop_kb(self):
|
||
"""删除知识库"""
|
||
# self.kb_file: 知识库路径
|
||
if os.path.exists(self.kb_path):
|
||
shutil.rmtree(self.kb_path)
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|