48 lines
1.9 KiB
Python
48 lines
1.9 KiB
Python
import os.path
|
|
from server.knowledge_base.utils import (get_file_path, get_vs_path,
|
|
refresh_vs_cache, load_embeddings)
|
|
from configs.model_config import (embedding_model_dict, EMBEDDING_MODEL, EMBEDDING_DEVICE)
|
|
from langchain.vectorstores import FAISS
|
|
from server.utils import torch_gc
|
|
|
|
|
|
class KnowledgeFile:
|
|
def __init__(
|
|
self,
|
|
filename: str,
|
|
knowledge_base_name: str
|
|
):
|
|
self.knowledge_base_name = knowledge_base_name
|
|
self.knowledge_base_type = "faiss"
|
|
self.filename = filename
|
|
self.ext = os.path.splitext(filename)[-1]
|
|
self.filepath = get_file_path(knowledge_base_name, filename)
|
|
self.docs = None
|
|
|
|
def file2text(self):
|
|
if self.ext in []:
|
|
from langchain.document_loaders import UnstructuredFileLoader
|
|
loader = UnstructuredFileLoader(self.filepath)
|
|
elif self.ext in []:
|
|
pass
|
|
|
|
from langchain.text_splitter import CharacterTextSplitter
|
|
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
|
|
self.docs = loader.load_and_split(text_splitter)
|
|
return True
|
|
|
|
def docs2vs(self):
|
|
vs_path = get_vs_path(self.knowledge_base_name)
|
|
embeddings = load_embeddings(embedding_model_dict[EMBEDDING_MODEL], EMBEDDING_DEVICE)
|
|
if os.path.exists(vs_path) and "index.faiss" in os.listdir(vs_path):
|
|
vector_store = FAISS.load_local(vs_path, embeddings)
|
|
vector_store.add_documents(self.docs)
|
|
torch_gc()
|
|
else:
|
|
if not os.path.exists(vs_path):
|
|
os.makedirs(vs_path)
|
|
vector_store = FAISS.from_documents(self.docs, embeddings) # docs 为Document列表
|
|
torch_gc()
|
|
vector_store.save_local(vs_path)
|
|
refresh_vs_cache(self.knowledge_base_name)
|
|
return True |