Langchain-Chatchat/server/llm_api.py

250 lines
6.9 KiB
Python

from multiprocessing import Process, Queue
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
from configs.model_config import llm_model_dict, LLM_MODEL, LLM_DEVICE, LOG_PATH, logger
host_ip = "0.0.0.0"
controller_port = 20001
model_worker_port = 20002
openai_api_port = 8888
base_url = "http://127.0.0.1:{}"
queue = Queue()
def set_httpx_timeout(timeout=60.0):
import httpx
httpx._config.DEFAULT_TIMEOUT_CONFIG.connect = timeout
httpx._config.DEFAULT_TIMEOUT_CONFIG.read = timeout
httpx._config.DEFAULT_TIMEOUT_CONFIG.write = timeout
def create_controller_app(
dispatch_method="shortest_queue",
):
import fastchat.constants
fastchat.constants.LOGDIR = LOG_PATH
from fastchat.serve.controller import app, Controller
controller = Controller(dispatch_method)
sys.modules["fastchat.serve.controller"].controller = controller
return app
def create_model_worker_app(
model_path=llm_model_dict[LLM_MODEL].get("local_model_path"),
model_names=[LLM_MODEL],
device=LLM_DEVICE,
load_8bit=False,
gptq_ckpt=None,
gptq_wbits=16,
gptq_groupsize=-1,
gptq_act_order=None,
gpus=None,
num_gpus=1,
max_gpu_memory="20GiB",
cpu_offloading=None,
worker_address=base_url.format(model_worker_port),
controller_address=base_url.format(controller_port),
limit_worker_concurrency=5,
stream_interval=2,
no_register=False,
):
import fastchat.constants
fastchat.constants.LOGDIR = LOG_PATH
from fastchat.serve.model_worker import app, GptqConfig, ModelWorker, worker_id
from fastchat.serve import model_worker
import argparse
parser = argparse.ArgumentParser()
args = parser.parse_args()
args.model_path = model_path
args.model_names = model_names
args.device = device
args.load_8bit = load_8bit
args.gptq_ckpt = gptq_ckpt
args.gptq_wbits = gptq_wbits
args.gptq_groupsize = gptq_groupsize
args.gptq_act_order = gptq_act_order
args.gpus = gpus
args.num_gpus = num_gpus
args.max_gpu_memory = max_gpu_memory
args.cpu_offloading = cpu_offloading
args.worker_address = worker_address
args.controller_address = controller_address
args.limit_worker_concurrency = limit_worker_concurrency
args.stream_interval = stream_interval
args.no_register = no_register
if args.gpus:
if len(args.gpus.split(",")) < args.num_gpus:
raise ValueError(
f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!"
)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
if gpus and num_gpus is None:
num_gpus = len(gpus.split(','))
args.num_gpus = num_gpus
gptq_config = GptqConfig(
ckpt=gptq_ckpt or model_path,
wbits=args.gptq_wbits,
groupsize=args.gptq_groupsize,
act_order=args.gptq_act_order,
)
# torch.multiprocessing.set_start_method('spawn')
worker = ModelWorker(
controller_addr=args.controller_address,
worker_addr=args.worker_address,
worker_id=worker_id,
model_path=args.model_path,
model_names=args.model_names,
limit_worker_concurrency=args.limit_worker_concurrency,
no_register=args.no_register,
device=args.device,
num_gpus=args.num_gpus,
max_gpu_memory=args.max_gpu_memory,
load_8bit=args.load_8bit,
cpu_offloading=args.cpu_offloading,
gptq_config=gptq_config,
stream_interval=args.stream_interval,
)
sys.modules["fastchat.serve.model_worker"].worker = worker
sys.modules["fastchat.serve.model_worker"].args = args
sys.modules["fastchat.serve.model_worker"].gptq_config = gptq_config
return app
def create_openai_api_app(
host=host_ip,
port=openai_api_port,
controller_address=base_url.format(controller_port),
api_keys=[],
):
import fastchat.constants
fastchat.constants.LOGDIR = LOG_PATH
from fastchat.serve.openai_api_server import app, CORSMiddleware, app_settings
app.add_middleware(
CORSMiddleware,
allow_credentials=True,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
app_settings.controller_address = controller_address
app_settings.api_keys = api_keys
return app
def run_controller(q):
import uvicorn
app = create_controller_app()
@app.on_event("startup")
async def on_startup():
set_httpx_timeout()
q.put(1)
uvicorn.run(app, host=host_ip, port=controller_port)
def run_model_worker(q, *args, **kwargs):
import uvicorn
app = create_model_worker_app(*args, **kwargs)
@app.on_event("startup")
async def on_startup():
set_httpx_timeout()
while True:
no = q.get()
if no != 1:
q.put(no)
else:
break
q.put(2)
uvicorn.run(app, host=host_ip, port=model_worker_port)
def run_openai_api(q):
import uvicorn
app = create_openai_api_app()
@app.on_event("startup")
async def on_startup():
set_httpx_timeout()
while True:
no = q.get()
if no != 2:
q.put(no)
else:
break
q.put(3)
uvicorn.run(app, host=host_ip, port=openai_api_port)
if __name__ == "__main__":
logger.info(llm_model_dict[LLM_MODEL])
model_path = llm_model_dict[LLM_MODEL]["local_model_path"]
logger.info(f"如需查看 llm_api 日志,请前往 {LOG_PATH}")
if not model_path:
logger.error("local_model_path 不能为空")
else:
controller_process = Process(
target=run_controller,
name=f"controller({os.getpid()})",
args=(queue,),
daemon=True,
)
controller_process.start()
# cuda 没办法用在fork的多进程中
# model_worker_process = Process(
# target=run_model_worker,
# name=f"model_worker({os.getpid()})",
# args=(queue,),
# # kwargs={"load_8bit": True},
# daemon=True,
# )
# model_worker_process.start()
openai_api_process = Process(
target=run_openai_api,
name=f"openai_api({os.getpid()})",
args=(queue,),
daemon=True,
)
openai_api_process.start()
run_model_worker(queue)
controller_process.join()
# model_worker_process.join()
openai_api_process.join()
# 服务启动后接口调用示例:
# import openai
# openai.api_key = "EMPTY" # Not support yet
# openai.api_base = "http://localhost:8888/v1"
# model = "chatglm2-6b"
# # create a chat completion
# completion = openai.ChatCompletion.create(
# model=model,
# messages=[{"role": "user", "content": "Hello! What is your name?"}]
# )
# # print the completion
# print(completion.choices[0].message.content)